Are Corrosion and Material Loss a Threat for Titanium-Titanium Tapers in Total Hip Arthroplasty Modular Acetabular Components?

J Arthroplasty

Implant Research Core, School of Biomedical Science, Engineering, and Health Systems, Drexel University, Philadelphia, Pennsylvania.

Published: June 2024

Background: Extensive research has reported on fretting corrosion and material loss for a variety of metal taper interfaces in orthopedic devices. For modular acetabular shell-liner constructs, the interfaces studied thus far have consisted of mixed-metal pairings, and the risk of fretting corrosion and material loss for the all-titanium (Ti) shell-liner taper junction in one ceramic-on-ceramic (COC) design remains poorly understood. We asked: do Ti shell-liner taper interfaces in COC total hip arthroplasty devices show in vivo evidence of (1) fretting and/or corrosion, and (2) quantifiable potential material loss?

Methods: We examined 22 shell-liner pairs and 22 single liners from retrieved COC components. The taper interface surfaces were assessed for fretting corrosion using a semiquantitative scoring method and imaged with scanning electron microscopy. A subcohort of components was measured with a coordinate measuring machine, and volumetric material loss and maximum wear depth were calculated.

Results: Fretting corrosion at the taper interfaces was minimal to mild for 95% of liners and 100% of shells. Imaging revealed fretting marks within a band of corrosion on some implants and evidence of corrosion not in the proximity of mechanical damage. Estimated material loss ranged from 0.2 to 1.3 mm for liners, and 0.5 to 1.1 mm for shells. Maximum wear depth for all components was 0.03 mm or less.

Conclusions: Our results indicate that, compared to other taper junctions in total joint arthroplasty, the risk of corrosion and material loss may be minimal for Ti shell-liner interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arth.2023.12.001DOI Listing

Publication Analysis

Top Keywords

material loss
24
corrosion material
16
fretting corrosion
16
taper interfaces
12
corrosion
9
total hip
8
hip arthroplasty
8
modular acetabular
8
shell-liner taper
8
maximum wear
8

Similar Publications

Purpose: Cochlear implantation (CI) surgery is essential for restoring hearing in individuals with severe sensorineural hearing loss. Accurate placement of the electrode within the cochlea is essential for successful auditory outcomes and minimizing complications. This study aims to analyze the relationship between the round window niche (RWN) alignment, its visibility during surgery, and the impact on surgical techniques and outcomes.

View Article and Find Full Text PDF

The main advantages of microneedles are precise drug delivery through human skin, minimal tissue damage and painlessness. We conducted structural analysis and skin puncture studies of hollow microneedles using ANSYS for three materials: Hafnium Dioxide (HfO), Polyglycolic acid (PGA) and Polylactic acid (PLA). Firstly, we selected three lengths, three tip diameters and three base diameters to conduct a L(3) orthogonal experiment.

View Article and Find Full Text PDF

A significant challenge in computational chemistry is developing approximations that accelerate ab initio methods while preserving accuracy. Machine learning interatomic potentials (MLIPs) have emerged as a promising solution for constructing atomistic potentials that can be transferred across different molecular and crystalline systems. Most MLIPs are trained only on energies and forces in vacuum, while an improved description of the potential energy surface could be achieved by including the curvature of the potential energy surface.

View Article and Find Full Text PDF

Statement Of Problem: Although immediate implant loading has shown promising clinical results and high survival rates, an increased risk of implant failure and complications has been reported. Achieving consistently predictable outcomes with this approach remains a challenge, but evidence-based guidelines to assist in selecting suitable patients are lacking.

Purpose: The purpose of this retrospective clinical study was to investigate the success rate, survival rate, and complications of immediate implant loading compared with early and delayed loading.

View Article and Find Full Text PDF

Decellularized cartilage tissue bioink formulation for osteochondral graft development.

Biomed Mater

January 2025

Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.

Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!