The alarming human health effects induced by endocrine disruptors (ED) have raised the attention of public opinion and policy makers leading worldwide to regulations that are continuously improved to reduce exposure to them. However, decreasing the exposure levels is challenging because EDs are ubiquitous and exposure occurs through multiple routes. The main exposure route is considered ingestion, but, recently, the inhalation has been hypothesized as an important additional route. To explore this scenario, some authors applied bioassays to assess the endocrine activity of air. This review summarizes for the first time the applied methods and the obtained evidences about the in vitro endocrine activity of airborne particulate matter (PM) collected outdoor. Among the bioassay endpoints, (anti)oestrogenic and (anti)androgenic activities were selected because are the most studied endocrine activities. A total of 24 articles were ultimately included in this review. Despite evidences are still scarce, the results showed that PM can induce oestrogenic, antioestrogenic, androgenic and antiandrogenic effects, suggesting that PM has an endocrine disrupting potential that should be considered because it could represent a further source of exposure to EDs. Although it is difficult to estimate how much inhalation can contribute to the total burden of EDs, endocrine activity of PM may increase the human health risk. Finally, the results pointed out that the overall endocrine activity is difficult to predict from the concentrations of individual pollutants, so the assessment using bioassays could be a valuable additional tool to quantify the health risk posed by EDs in air.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.140887DOI Listing

Publication Analysis

Top Keywords

endocrine activity
16
endocrine disruptors
8
particulate matter
8
human health
8
health risk
8
endocrine
7
activity
5
exposure
5
atmospheric endocrine
4
disruptors systematic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!