Environmental fate and risk evolution of calcium channel blockers from chlorine-based disinfection to sunlit surface waters.

Water Res

Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China. Electronic address:

Published: February 2024

Organic micropollutants present in disinfected wastewater and discharged to sunlit surface waters may be transformed by multiple processes, such as chlorination due to the presence of chlorine residuals, solar irradiation as well as solar-irradiated chlorine residues. This study reports, for the first time, the multi-scenario degradation kinetics, transformation products, and risk evolution of calcium channel blockers (CCBs), a class of emerging pharmaceutical contaminants with worldwide prevalence in natural waters and wastewater. It was found that the chlorination of the studied CCBs (amlodipine (AML) and verapamil (VER)) was dominated by the reaction of HOCl with their neutral species, with second-order rate constants of 6.15×10 M s (AML) and 7.93×10 M s (VER) at pH 5.0-11.0. Bromination is much faster than chlorination, with the measured k values of 2.94×10 M s and 6.58×10 M s for AML and VER, respectively, at pH 7.0. Furthermore, both CCBs would undergo photolytic attenuations with hydroxyl and carbonate radicals as the dominant reactive species in water. Notably, free chlorine mainly contributed to their abatement during the solar/chlorine treatment. Additionally, the halogen addition on the aromatic ring was observed during chlorination and bromination of the two CCBs. Cyclization was observed under solar irradiation only, while the aromatic ring was opened in the solar/chlorine system. Some products generated by the three transformation processes exhibited non-negligible risks of high biodegradation recalcitrance and toxicity, potentially threatening the aquatic environment and public health. Overall, this study elucidated the environmental fate of typical CCBs under different transformation processes to better understand the resulting ecological risks in these environmental scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120968DOI Listing

Publication Analysis

Top Keywords

environmental fate
8
risk evolution
8
evolution calcium
8
calcium channel
8
channel blockers
8
sunlit surface
8
surface waters
8
solar irradiation
8
aromatic ring
8
transformation processes
8

Similar Publications

Regulation of desiccation-immersion cycle on the rate and fate of dissolved organic carbon release by Ulva pertusa.

Mar Environ Res

December 2024

Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China. Electronic address:

Macroalgae widely distribute in intertidal zones, one of blue carbon organisms. However, the regulatory mechanisms of tide on the carbon sequestration of macroalgae are still unclear. This study explored the effects of desiccation-rewetting cycles induced by tide on dissolved organic carbon (DOC) release from Ulva pertusa, which is prevalent from high to low tidal zones.

View Article and Find Full Text PDF

Per- and poly-fluoroalkyl substances (PFAS) have emerged as a silent menace, infiltrating groundwater systems worldwide. Many countries, preoccupied with tackling legacy pollutants, have inadvertently neglected the emerging threat of PFAS. This review provides an exhaustive analysis beyond the current state of knowledge and sustainable pathways vis-a-vis addressing PFAS in groundwater systems globally.

View Article and Find Full Text PDF

Dry deposition is an important yet poorly constrained process that removes reactive organic carbon from the atmosphere, making it unavailable for airborne chemical reactions and transferring it to other environmental systems. Using an aircraft-based measurement method, we provide large-scale estimates of total gas-phase organic carbon deposition rates and fluxes. Observed deposition rates downwind of large-scale unconventional oil operations reached up to 100 tC hour, with fluxes exceeding 0.

View Article and Find Full Text PDF

Lung fibrosis development utilizes alveolar macrophages, with mechanisms that are incompletely understood. Here, we fate map connective tissue during mouse lung fibrosis and observe disassembly and transfer of connective tissue macromolecules from pleuro-alveolar junctions (PAJs) into deep lung tissue, to activate fibroblasts and fibrosis. Disassembly and transfer of PAJ macromolecules into deep lung tissue occurs by alveolar macrophages, activating cysteine-type proteolysis on pleural mesothelium.

View Article and Find Full Text PDF

Reduced adult stem cell fate specification led to eye reduction in cave planarians.

Nat Commun

January 2025

Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.

Eye loss occurs convergently in numerous animal phyla as an adaptation to dark environments. We investigate the cave planarian Girardia multidiverticulata (Gm), a representative species of the Spiralian clade, to study mechanisms of eye loss. We found that Gm, which was previously described as an eyeless species, retains rudimentary and functional eyes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!