The White Truffle is the most expensive edible underground mushroom. In this study the first characterization of the Acqualagna white truffle was delivered, taking into consideration the soil of origin and the human perception. The volatile profile was identified by GC-MS and compared with the descriptors obtained by sensory analysis. The non-volatile characterization was done using elemental composition by ICP-MS analysis, elemental analysis, and spectrophotometric assays. The volatile profile consists mainly of bis(methylthio)methane (78.72%) and other minor constituents, linked to seven odorant descriptors: garlic-like, nutty-like, geosmine-like, floral, mushroom-like, pungent and green/herbal. ICP-MS revealed that truffle has a higher content of K, P, S, Ca and Mg (97% of the elements investigated) and that it assimilates the Rare Earth Elements (REE) from the soil without discriminating them. In conclusion, this project is the first step for the enhancement of local food, linked to the territory conditions in which it is produced.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.138089DOI Listing

Publication Analysis

Top Keywords

elemental composition
8
composition icp-ms
8
white truffle
8
volatile profile
8
white acqualagna
4
truffle
4
acqualagna truffle
4
truffle tuber
4
tuber magnatum
4
magnatum pico
4

Similar Publications

As teeth develop, their mineralised composition is a bio-recorder of diet, environment, and growth. High-resolution elemental mapping provides a tool to reveal records of life history within teeth. The relative concentrations of a range of trace elements change between in utero development, birth, and weaning in eutherian mammals.

View Article and Find Full Text PDF

The precise identification of various toxic gases is important to prevent health and environmental hazards using cost-effective, efficient, metal oxide-based chemiresistive sensing methods. This study explores the sensing properties of a chemiresistive sensor based on a ZnSnO-SnO microcomposite for detecting -butanol vapours. The microcomposite, enriched with oxygen vacancies, was thoroughly characterized, confirming its structure, crystallinity, morphology and elemental composition.

View Article and Find Full Text PDF

Quantifying changes in the properties of smoke aerosols under varying conditions is important for understanding the health and environmental impacts of exposure to smoke. Smoke composition, aerosol liquid water content, effective density (ρ), and other properties can change significantly as smoke travels through areas under different ambient conditions and over time. During this study, we measured changes in smoke composition and physical properties due to oxidative aging and exposure to humidity.

View Article and Find Full Text PDF

Loading with non-metal cocatalysts to regulate interfacial charge transfer and separation has become a prominent focus in current research. In this study, g-CN/CNT composites loaded with non-metallic cocatalysts were prepared through pyrolysis using urea and CNTs. Various characterization techniques, including transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), photoelectrochemical (PEC) analysis, fluorescence lifetime spectroscopy (TRPL), electron paramagnetic resonance spectroscopy (ESR), and photoluminescence (PL) spectroscopy, were employed to analyze the sample's microstructure, phase composition, elemental chemical states, and photoelectronic properties.

View Article and Find Full Text PDF

Light-driven in-situ synthesis of nano-sulfur and graphene oxide composites for efficient removal of heavy metal ions.

J Hazard Mater

January 2025

State Key Lab of Geohazard prevention & Geoenvironment protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:

Sulfur nanoparticles (SNPs) and their composites are promising for heavy metal adsorption, yet current SNPs often lack surface S, leading to low affinity toward heavy metal and ease of aggregation. Here, we report a simple light-driven method for facile prepare SNPs with surfaces enriched with S and in-situ load them onto graphene oxide (GO) to fabricate GO-S composites. Under illumination, the O generated by photosensitizer phloxine B was able to oxidize S into elemental SNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!