AI Article Synopsis

  • Trees in mixed forests show varying water use strategies, with Fagus sylvatica (beech) increasing water fluxes by 13.3% when growing alongside Picea abies (spruce), while spruce experiences a 14.5% reduction in sap flow due to competition.
  • The study utilized advanced isotope spectroscopy to track how these species adapt their water uptake, revealing that beech trees shift to deeper soil layers in mixed sites while increasing absorption of new rainfall in beech-dominated areas.
  • Understanding these adaptive water use patterns is crucial as climate change leads to increased water scarcity and irregular precipitation, impacting forest ecosystems.

Article Abstract

Beneficial and negative effects of species interactions can strongly influence water fluxes in forest ecosystems. However, little is known about how trees dynamically adjust their water use when growing with interspecific neighbours. Therefore, we investigated the interaction effects between Fagus sylvatica (European beech) and Picea abies (Norway spruce) on water-use strategies and aboveground structural characteristics. We used continuous in situ isotope spectroscopy of xylem and soil water to investigate source water dynamics and root water uptake depths. Picea abies exhibited a reduced sun-exposed crown area in equally mixed compared with spruce-dominated sites, which was further correlated to a reduction in sap flow of -14.5 ± 8.2%. Contrarily, F. sylvatica trees showed +13.3 ± 33.3% higher water fluxes in equally mixed compared with beech-dominated forest sites. Although a significantly higher crown interference by neighbouring trees was observed, no correlation of water fluxes and crown structure was found. High time-resolved xylem δ2H values showed a large plasticity of tree water use (-74.1 to -28.5‰), reflecting the δ2H dynamics of soil and especially precipitation water sources. Fagus sylvatica in equally mixed sites shifted water uptake to deeper soil layers, while uptake of fresh precipitation was faster in beech-dominated sites. Our continuous in situ water stable isotope measurements traced root water uptake dynamics at unprecedented temporal resolution, indicating highly dynamic use of water sources in response to precipitation and to neighbouring species competition. Understanding this plasticity may be highly relevant in the context of increasing water scarcity and precipitation variability under climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpad144DOI Listing

Publication Analysis

Top Keywords

water
16
water uptake
16
root water
12
water fluxes
12
equally mixed
12
fagus sylvatica
8
picea abies
8
continuous situ
8
mixed compared
8
water sources
8

Similar Publications

The widespread use of pesticides, including diazinon, poses an increased risk of environmental pollution and detrimental effects on biodiversity, food security, and water resources. In this study, we investigated the impact of Potentially Toxic Elements (PTE) including Zn, Cd, V, and Mn on the degradation of diazinon in three different soils. We investigated the capability and performance of four machine learning models to predict residual pesticide concentration, including adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), radial basis function (RBF), and multi-layer perceptron (MLP).

View Article and Find Full Text PDF

Application of zeolites for efficient tannery wastewater remediation.

Environ Sci Pollut Res Int

December 2024

Stazione Sperimentale Per L'industria Delle Pelli E Delle Materie Concianti S.R.L., 80143, Napoli, Italy.

Leather manufacturing is the process of converting raw animal hides or skins into finished leather. The complex industrial procedures result in a tanning effluent composed of chemical compounds with potentially hazardous impacts on humans and ecosystems. Among the traditional and efficient wastewater treatments, adsorption is an effective and well-known approach, able to manage a wide range of contaminants from wastewater.

View Article and Find Full Text PDF

Chromium (Cr) is an ever-present abiotic stress that negatively affects crop cultivation and production worldwide. High rhizospheric Cr concentrations inhibit nutrients uptake and their translocation to aboveground parts, thus can affect the growth and development of crop plants. This experiment was designed to evaluate the effects of sole and combined zinc-lysine and iron-lysine applications on photosynthetic efficacy, antioxidative defense, oxidative stress, and nutrient uptake and translocation under Cr stress.

View Article and Find Full Text PDF

Continuous Characterization of Insoluble Particles in Ice Cores Using the Single-Particle Extinction and Scattering Method.

Environ Sci Technol

December 2024

Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, Bern 3012, Switzerland.

This study presents the integration of the single-particle extinction and scattering (SPES) method in a continuous flow analysis (CFA) setup. Continuous measurements with the instrument allow for the characterization of water-insoluble particles in ice cores at high resolution with a minimized risk of contamination. The SPES method can be used to investigate particles smaller than 1 μm, which previously could not be detected by instruments typically used in CFA.

View Article and Find Full Text PDF

Interfacial solar evaporator generation (ISVG) is a new, cost-effective, and eco-friendly emerging method for water desalination. Two main criteria for evaluating ISVG performance are evaporation rate () and solar-to-vapor conversion efficiency (η). The main challenge of the previously presented models for the estimation of and η in 2D systems is that in most cases the calculated values are beyond the theoretical limits, > 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!