Homocysteine impairs the anticontractile/vasorelaxing activity of perivascular adipose tissue surrounding human internal mammary artery.

Eur J Cardiothorac Surg

Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin, China.

Published: December 2023

Objectives: Perivascular adipose tissue (PVAT) surrounding human internal mammary artery (IMA) possesses anticontractile property. Its function under pathological conditions is barely studied. We previously reported that homocysteine impairs the vasodilator function of IMA through endothelium and smooth muscle-dependent mechanisms. This study investigated the effect of homocysteine on the function of PVAT and the associated mechanisms.

Methods: Residual IMA tissues were collected from patients undergoing coronary artery bypass grafting. Vasoreactivity was studied using myograph. Adiponectin was measured by ELISA. Expressions of adiponectin receptors (AdipoRs), eNOS and p-eNOS were determined by RT-qPCR and Western blot.

Results: Exposure to homocysteine augmented the contractile responses of PVAT-intact IMA to U46619 and potassium chloride, regardless with or without endothelium. Such augmentation was also observed in skeletonized IMA with transferred, homocysteine-exposed PVAT. Homocysteine attenuated the relaxant response of PVAT-intact while endothelium-denuded vessels to acetylcholine. Homocysteine lowered adiponectin content in the PVAT, downregulated the expression of AdipoR1 and AdipoR2 as well as eNOS and p-eNOS in skeletonized IMA. The relaxant response of skeletonized IMA to AdipoR agonist AdipoRon was blunted by homocysteine or eNOS inhibitor, and homocysteine significantly attenuated the inhibitory effect of eNOS inhibitor on AdipoRon-induced relaxation.

Conclusions: Homocysteine impairs the anticontractile/vasorelaxing activity of PVAT surrounding the IMA through inhibiting adiponectin/AdipoR/eNOS/nitric oxide signalling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ejcts/ezad406DOI Listing

Publication Analysis

Top Keywords

homocysteine impairs
12
skeletonized ima
12
homocysteine
9
impairs anticontractile/vasorelaxing
8
anticontractile/vasorelaxing activity
8
perivascular adipose
8
adipose tissue
8
surrounding human
8
human internal
8
internal mammary
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!