Solid tumors contain abnormal physical and biochemical barriers that hinder chimeric antigen receptor (CAR) T cell therapies. However, there is a lack of understanding on how the solid tumor microenvironment (e.g. hypoxia) modulates CAR-T cell function. Hypoxia is a common feature of many advanced solid tumors that contributes to reprogramming of cancer and T cell metabolism as well as their phenotypes and interactions. To gain insights into the activities of CAR-T cells in solid tumors and to assess the effectiveness of new combination treatments involving CAR-T cells, in vitro models that faithfully reflect CAR-T cell-solid tumor interactions under physiologically relevant tumor microenvironment is needed. Here we demonstrate how to establish a hypoxic 3-dimensional (3-D) tumor model using a cleanroom-free, micromilling-based microdevice and assess the efficacy of the combination treatment with CAR-T cells and PD-1/PD-L1 inhibition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3593-3_10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!