A cardinal principle of oncoimmunology is that cancer cells can be eliminated by tumor-infiltrating cytotoxic CD8 T lymphocytes. This has been widely demonstrated during the last 20 years and also recently harnessed for therapy. However, emerging evidence indicates that even neoplasms showing striking initial responses to conventional and targeted (immuno)therapies often acquire resistance, resulting in tumor relapse, increased aggressiveness, and metastatization. Indeed, tumors are complex ecosystems whose malignant and nonmalignant cells, constituting the tumor microenvironment, constantly interact and evolve in space and time. Together with patient's own genetic factors, such environmental interplays may curtail antitumor immune responses leading to cancer immune evasion and natural/acquired (immuno)therapy resistance. In this context, cancer stem cells (CSCs) are thought to be the roots of therapy failure. Flow cytometry is a powerful technology that finds extensive applications in cancer biology. It offers several unique advantages as it allows the rapid, quantitative, and multiparametric analysis of cell populations or functions at the single-cell level. In this chapter, we discuss a two-color flow cytometric protocol to evaluate cancer cell immunogenicity by analyzing the proliferative and tumor-killing potential of ovalbumin (OVA)-specific CD8 OT-1 T cells exposed to OVA-expressing MCA205 sarcoma cells and their CSC counterparts.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3593-3_2DOI Listing

Publication Analysis

Top Keywords

cancer cell
8
cell immunogenicity
8
flow cytometry
8
cancer
6
cells
5
vitro evaluation
4
evaluation cancer
4
immunogenicity antigen-specific
4
antigen-specific t-cell
4
t-cell cytotoxicity
4

Similar Publications

Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery.

View Article and Find Full Text PDF

Amino-quinolines are potential candidates that may provide some insight into the current chemotherapeutic research due to their demonstrated anti-cancer activity. This led us to synthesize and explore a new amino-azo-quinoline ligand H2L 1 and its square planar nickel(II) complexes [Ni(HL)(OAc)], 2 and [Ni(HL)Cl], 3 and the structures were determined by SCXRD. Theoretical investigation of redox orbitals of the complexes discloses that the reduction process is due to ligand reduction whereas both metal and ligand are contributing towards oxidation.

View Article and Find Full Text PDF

Breast cancers of the IntClust-2 type, characterized by amplification of a small portion of chromosome 11, have a median survival of only five years. Several cancer-relevant genes occupy this portion of chromosome 11, and it is thought that overexpression of a combination of driver genes in this region is responsible for the poor outcome of women in this group. In this study we used a gene editing method to knock out, one by one, each of 198 genes that are located within the amplified region of chromosome 11 and determined how much each of these genes contributed to the survival of breast cancer cells.

View Article and Find Full Text PDF

Purpose: Orvacabtagene autoleucel (orva-cel; JCARH125), a CAR T-cell therapy targeting B-cell maturation antigen (BCMA), was evaluated in relapsed/refractory multiple myeloma (RRMM) patients in the EVOLVE phase 1/2 study (NCT03430011). We applied a modified piecewise model to characterize orva-cel transgene kinetics and assessed the impact of various covariates on its pharmacokinetics (PK).

Experimental Design: The population PK analysis included 159 patients from the EVOLVE study.

View Article and Find Full Text PDF

Purpose: Therapeutic efficacy of KRASG12C(OFF) inhibitors (KRASG12Ci) in KRASG12C-mutant non-small cell lung cancer (NSCLC) varies widely. The activation status of RAS signaling in tumors with KRASG12C mutation remains unclear, as its ability to cycle between the active GTP-bound and inactive GDP-bound states may influence downstream pathway activation and therapeutic responses. We hypothesized that the interaction between RAS and its downstream effector RAF in tumors may serve as indicators of RAS activity, rendering NSCLC tumors with a high degree of RAS engagement and downstream effects more responsive to KRASG12Ci compared to tumors with lower RAS---RAF interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!