Advancements in 3D bioprinting, particularly the use of gelatin methacrylate (GelMA) hydrogels, are ushering in a transformative era in regenerative medicine and tissue engineering. This review highlights the pivotal role of GelMA hydrogels in wound healing and skin regeneration. Its biocompatibility, tunable mechanical properties and support for cellular proliferation make it a promising candidate for bioactive dressings and scaffolds. Challenges remain in optimizing GelMA hydrogels for clinical use, including scalability of 3D bioprinting techniques, durability under physiological conditions and the development of advanced bioinks. The review covers GelMA's applications from enhancing wound dressings, promoting angiogenesis and facilitating tissue regeneration to addressing microbial infections and diabetic wound healing. Preclinical studies underscore GelMA's potential in tissue healing and the need for further research for real-world applications. The future of GelMA hydrogels lies in overcoming these challenges through multidisciplinary collaboration, advancing manufacturing techniques and embracing personalized medicine paradigms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10961039 | PMC |
http://dx.doi.org/10.1111/iwj.14533 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
Intervertebral disc degeneration (IVDD) is a major contributor to chronic back pain and disability, with limited effective therapeutic options. Current treatment options, including conservative management and surgical interventions, often fail to effectively halt disease progression and come with notable side effects. IVDD is characterized by the breakdown of the extracellular matrix (ECM) and the infiltration of inflammatory cells, which exacerbate disc degeneration.
View Article and Find Full Text PDFMacromol Biosci
January 2025
Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China.
Osteoporotic bone regeneration is challenging due to impaired bone formation. Tetrahedral DNA nanostructures (TDN), promising nucleic acid nanomaterials, have garnered attention for their potential in osteoporotic mandibular regeneration owing to their ability to enhance cellular activity and promote osteogenic differentiation. Osteoblasts play a critical role in bone regeneration; however, intracellular delivery of TDN into osteoblasts remains difficult.
View Article and Find Full Text PDFBiomater Sci
January 2025
Biotechnology Centre, The Silesian University of Technology, B. Krzywoustego 8, 44-100, Gliwice, Poland.
Metallic biomaterials are extensively used in orthopedics and dentistry, either as implants or coatings. In both cases, metal ions come into contact with surrounding tissues causing a particular cell response. Here, we present a biofabricated tissue model, consisting of a hydrogel reinforced with a melt electrowritten mesh, to study the effects of bound and released metal ions on surrounding cells embedded in a hydrogel matrix.
View Article and Find Full Text PDFACS Omega
January 2025
Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, ON, Canada.
Dry eye disease is becoming increasingly prevalent, and lubricating eye drops, a mainstay of its treatment, have a short duration of time on the ocular surface. Although there are various drug delivery methods to increase the ocular surface residence time of a topical lubricant, the main problem is the burst release from these delivery systems. To overcome this limitation, herein, a chemical-physical interpenetrating network (IPN) was fabricated to take control over the release of poly(vinyl alcohol) (PVA), a well-known therapeutic agent used to stabilize tear film, from gelatin methacrylate (GelMA) hydrogels.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Sports Medicine, Fourth Medical Center of PLA General Hospital, Beijing 100048, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!