Bovine herpesvirus type 1 (BoHV-1) is a pathogen of cattle responsible for infectious bovine rhinotracheitis. The BoHV-1 UL49.5 is a transmembrane protein that binds to the transporter associated with antigen processing (TAP) and downregulates cell surface expression of the antigenic peptide complexes with the major histocompatibility complex class I (MHC-I). KLHDC3 is a kelch domain-containing protein 3 and a substrate receptor of a cullin2-RING (CRL2) E3 ubiquitin ligase. Recently, it has been identified that CRL2 is responsible for UL49.5-triggered TAP degradation via a C-degron pathway and the presence of the degron sequence does not lead to the degradation of UL49.5 itself. The molecular modeling of KLHDC3 in complexes with four UL49.5 C-terminal decapeptides (one native protein and three mutants) revealed their activity to be closely correlated with the conformation which they adopt in KLHDC3 binding cleft. To analyze the interaction between UL49.5 and KLHDC3 in detail, in this work a total of 3.6 μs long molecular dynamics simulations have been performed. The complete UL49.5-KLHDC3 complexes were embedded into the fully hydrated all-atom lipid membrane model with explicit water molecules. The network of polar interactions has been proposed to be responsible for the recognition and binding of the degron in KLHDC3. The interaction network within the binding pocket appeared to be very similar between two CRL2 substrate receptors: KLHDC3 and KLHDC2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.26651 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
Lysophosphatidic acid (LPA) exerts its physiological roles through the endothelialdifferentiation gene (EDG) family LPA receptors (LPAR1-3) or the non-EDG family LPA receptors (LPAR4-6). LPAR6 plays crucial roles in hair loss and cancer progression, yet its structural information is very limited. Here, we report the cryoelectron microscopy structure of LPA-bound human LPAR6 in complex with a mini G or G protein.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
Increasing the degree of freedom for quantum entanglement within tensor networks can enhance the depiction of the essence in many-body systems. However, this enhancement comes with a significant increase in computational complexity and critical slowing down, which drastically increases time consumption. This work converts a quantum tensor network algorithm into a classical circuit on the Field Programmable Gate Arrays (FPGAs) and arranges the computing unit with a dense parallel design, efficiently optimizing the time consumption.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Bulk Acoustic Wave (BAW) filters find applications in radio frequency (RF) communication systems for Wi-Fi, 3G, 4G, and 5G networks. In the beyond-5G (potential 6G) era, high-frequency bands (>8 GHz) are expected to require resonators with high-quality factor (Q) and electromechanical coupling ( ) to form filters with low insertion loss and high selectivity. However, both the Q and of resonator devices formed in traditional uniform polarization piezoelectric films of aluminum nitride (AlN) and aluminum scandium nitride (AlScN) decrease when scaled beyond 8 GHz.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China; National Key Laboratory of Biobased Transportation Fuel Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. Electronic address:
Cellulose has outstanding potential for application in energy storage batteries due to its high temperature resistance, high electrolyte affinity, renewability, and suppression of the shuttle effect, but single cellulose membranes still suffer from problems such as inhomogeneous pore distribution and unstable three-dimensional network structure. In this study, a green and sustainable regenerative cellulose (RC)/sodium alginate (SA) gel electrolyte membrane is developed by sol-gel process, the double crosslinked network scaffold centered on Zn was constructed by the synergistic hydrogen-bonding and metal ion- coordination network, the stable and uniform pore structure was also formed. The obtained RC-SA gel electrolyte membrane exhibits outstanding performance, featuring a dual crosslinked network with abundant pore structure and numerous polar groups that effectively enhance Zn transport, significantly improving battery cycling performance.
View Article and Find Full Text PDFGene
January 2025
Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China. Electronic address:
Background: Mechanical stretch is utilized in the process of tissue expansion to promote skin regeneration, which is crucial for wound healing and organ reconstruction purposes. Enlarged dermal area is one of the significant histological characteristics of the expanded skin. However, the underlying biological processes and molecular pathways associated with dermal regeneration triggered by mechanical stretch are still not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!