Advances in targeting the extracellular matrix for glaucoma therapy: current updates.

Expert Opin Ther Targets

School of Medicine, International Medical University, Kuala Lumpur, Malaysia.

Published: January 2024

Introduction: Elevated intraocular pressure (IOP) is a well-recognized risk factor for development of primary open angle glaucoma (POAG), a leading cause of irreversible blindness. Ocular hypertension is associated with excessive extracellular matrix (ECM) deposition in trabecular meshwork (TM) resulting in increased aqueous outflow resistance and elevated IOP. Hence, therapeutic options targeting ECM remodeling in TM to lower IOP in glaucomatous eyes are of considerable importance.

Areas Covered: This paper discusses the complex process of ECM regulation in TM and explores promising therapeutic targets. The role of Transforming Growth Factor-β as a central player in ECM deposition in TM is discussed. We elaborate the key regulatory processes involved in its activation, release, signaling, and cross talk with other signaling pathways including Rho GTPase, Wnt, integrin, cytokines, and renin-angiotensin-aldosterone. Further, we summarize the therapeutic agents that have been explored to target ECM dysregulation in TM.

Expert Opinion: Targeting molecular pathways to reduce ECM deposition and/or enhance its degradation are of considerable significance for IOP lowering. Challenges lie in pinpointing specific targets and designing drug delivery systems to precisely interact with pathologically active/inactive signaling. Recent advances in monoclonal antibodies, fusion molecules, and vectored nanotechnology offer potential solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14728222.2023.2293748DOI Listing

Publication Analysis

Top Keywords

ecm deposition
12
extracellular matrix
8
ecm
6
advances targeting
4
targeting extracellular
4
matrix glaucoma
4
glaucoma therapy
4
therapy current
4
current updates
4
updates introduction
4

Similar Publications

Aims: The goal of this study was to explore new candidate genes and pathogenesis mechanisms of nonsyndromic hereditary gingival fibromatosis (nsHGF) and to provide an experimental basis for the diagnosis of nsHGF.

Methods: Whole-exome sequencing (WES) was performed on peripheral blood DNA from three nsHGF family members to screen for new candidate genes, and Sanger sequencing and related databases were used to verify the pathogenicity of this gene deficiency. Moreover, the effects of gene deficiency on the biological characteristics of human gingival fibroblasts (HGFs) were evaluated via cell proliferation assays, extracellular matrix (ECM) deposition detection, cell apoptosis and cell cycle assessment, cell migration and gene expression analyses.

View Article and Find Full Text PDF

Fibroblasts, non-hematopoietic cells of mesenchymal origin, are tissue architects which regulate the topography of tissues, dictate tissue resident cell types, and drive fibrotic disease. Fibroblasts regulate the composition of the extracellular matrix (ECM), a 3-dimensional network of macromolecules that comprise the acellular milieu of tissues. Fibroblasts can directly and indirectly regulate immune responses by secreting ECM and ECM-bound molecules to shape tissue structure and influence organ function.

View Article and Find Full Text PDF

Keloids are abnormal scars formed due to fibroblast dysfunction and excessively deposited extracellular matrix (ECM). Despite the unclear process leading to the occurrence of keloids, several studies have demonstrated that histamine and its H1 receptor can effectively regulate fibroblast functions, contributing to keloid formation. Chlorpheniramine maleate (CPM) as a first-generation H1 antihistamine has been widely applied in symptomatic treatment of allergic conditions but its effects on keloids are unknown.

View Article and Find Full Text PDF

A protein corona modulates the function of mineralization-competent matrix vesicles.

JBMR Plus

February 2025

Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil.

Mineralizing cells release a special class of extracellular vesicles known as matrix vesicles (MV), crucial for bone mineralization. Following their release, MV anchor to the extracellular matrix (ECM), where their highly specialized enzymatic machinery facilitates the formation of seed mineral within the MV's lumen, subsequently releasing it onto the ECM. However, how MV propagate mineral onto the collagenous ECM remains unclear.

View Article and Find Full Text PDF

Anisotropic structure of nanofiber hydrogel accelerates diabetic wound healing via triadic synergy of immune-angiogenic-neurogenic microenvironments.

Bioact Mater

May 2025

State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.

Wound healing in chronic diabetic patients remains challenging due to the multiple types of cellular dysfunction and the impairment of multidimensional microenvironments. The physical signals of structural anisotropy offer significant potential for orchestrating multicellular regulation through physical contact and cellular mechanosensing pathways, irrespective of cell type. In this study, we developed a highly oriented anisotropic nanofiber hydrogel designed to provide directional guidance for cellular extension and cytoskeletal organization, thereby achieving pronounced multicellular modulation, including shape-induced polarization of macrophages, morphogenetic maturation of Schwann cells, oriented extracellular matrix (ECM) deposition by fibroblasts, and enhanced vascularization by endothelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!