The structural and biomechanical properties of collagen-rich ocular tissues, such as the sclera, are integral to ocular function. The degradation of collagen in such tissues is associated with debilitating ophthalmic diseases such as glaucoma and myopia, which often lead to visual impairment. Collagen mimetic peptides (CMPs) have emerged as an effective treatment to repair damaged collagen in tissues of the optic projection, such as the retina and optic nerve. In this study, we used atomic force microscopy (AFM) to assess the potential of CMPs in restoring tissue stiffness in the optic nerve head (ONH), including the peripapillary sclera (PPS) and the glial lamina. Using rat ONH tissue sections, we induced collagen damage with MMP-1, followed by treatment with CMP-3 or vehicle. MMP-1 significantly reduced the Young's modulus of both the PPS and the glial lamina, indicating tissue softening. Subsequent CMP-3 treatment partially restored tissue stiffness in both the PPS and the glial lamina. Immunohistochemical analyses revealed reduced collagen fragmentation after MMP-1 digestion in CMP-3-treated tissues compared to vehicle controls. In summary, these results demonstrate the potential of CMPs to restore collagen stiffness and structure in ONH tissues following enzymatic damage. CMPs may offer a promising therapeutic avenue for preserving vision in ocular disorders involving collagen remodeling and degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10707085PMC
http://dx.doi.org/10.3390/ijms242317031DOI Listing

Publication Analysis

Top Keywords

optic nerve
12
pps glial
12
glial lamina
12
collagen
9
collagen mimetic
8
mimetic peptides
8
nerve head
8
collagen tissues
8
potential cmps
8
tissue stiffness
8

Similar Publications

Early ultrastructural damage in retina and optic nerve following intraocular pressure elevation.

Vision Res

January 2025

Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

Elevated intraocular pressure (IOP) is a significant risk factor for glaucoma, causing structural and functional damage to the eye. Increased IOP compromises the metabolic and structural integrity of retinal ganglion cell (RGC) axons, leading to progressive degeneration and influencing the ocular immune response. This study investigated early cellular and molecular changes in the retina and optic nerve (ON) following ocular hypertension (OHT).

View Article and Find Full Text PDF

A 73-year-old male with a history of incidentally diagnosed Paget disease of bone affecting the skull and left orbit 2 years prior presented with 3 months of vision loss, proptosis, and periorbital swelling of the OS. Examination showed best-corrected Snellen visual acuity of 20/150 in the affected eye, intact motility, 7 mm of relative proptosis, significant dilated and tortuous "corkscrew" conjunctival vessels, serous choroidal and retinal detachments, optic nerve hyperemia, and venous tortuosity and dilation. Although the bony lesions in the left orbit were stable from 1 year prior on imaging, the diagnostic angiogram demonstrated osseous blush and hypervascularity of the lesion.

View Article and Find Full Text PDF

Introduction: Increased intracranial pressure (ICP) is common with viral encephalitis in children which is associated with complications and prognosis. The optic nerve sheath diameter (ONSD) is a new indicator for the assessment of intracranial pressure using ultrasound, CT scan and MRI imaging. Given the influence of physical development on ONSD size in children, we expect more accurate assessment of intracranial pressure with ONSD/ETD (eyeball transverse diameter) ratio by ultrasound.

View Article and Find Full Text PDF

Optic neuritis (ON) is the inflammation of the optic nerve. 'Typical' ON is commonly associated with multiple sclerosis (MS) and its classic triad includes sudden loss of vision, pain with eye movement and dyschromatopsia. It usually has good visual outcome irrespective of treatment.

View Article and Find Full Text PDF

Purpose: We aimed to build a machine learning-based model to predict radiation-induced optic neuropathy in patients who had treated head and neck cancers with radiotherapy.

Materials And Methods: To measure radiation-induced optic neuropathy, the visual evoked potential values were obtained in both case and control groups and compared. Radiomics features were extracted from the area segmented which included the right and left optic nerves and chiasm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!