There is a great interest in describing new molecules to be used as therapeutic targets in various diseases, particularly those that play a role in inflammatory responses and infection control. Mygalin is a synthetic analogue of spermidine, and previous studies have demonstrated its bactericidal effect against , as well as its ability to modulate the inflammatory response of macrophages against lipopolysaccharide (LPS). However, the mechanisms through which mygalin regulates this inflammatory response remain poorly characterized. A set of platforms using molecular docking analysis was employed to analyze various properties of mygalin, including toxicity, biodistribution, absorption, and the prediction of its anti-inflammatory properties. In in vitro assays, we evaluated the potential of mygalin to interact with products of the inflammatory response, such as reactive oxygen species (ROS) and antioxidant activity, using the BMDM cell. The in silico analyses indicated that mygalin is not toxic, and can interact with proteins from the kinase group, and enzymes and receptors in eukaryotic cells. Molecular docking analysis showed interactions with key amino acid residues of COX-2, iNOS and 5-LOX enzymes. In vitro, assays demonstrated a significant reduction in the expression of iNOS and COX-2 induced by LPS, along with a decrease in the oxidative stress caused by the treatment with PMA, all without altering cell viability. Mygalin exhibited robust antioxidant activity in DPPH assays, regardless of the dose used, and inhibited heat-induced hemolysis. These studies suggest that mygalin holds promise for further investigation as a new molecule with anti-inflammatory and antioxidant properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10707111PMC
http://dx.doi.org/10.3390/ijms242317019DOI Listing

Publication Analysis

Top Keywords

inflammatory response
12
anti-inflammatory antioxidant
8
mygalin
8
potential mygalin
8
molecular docking
8
docking analysis
8
vitro assays
8
antioxidant activity
8
silico vitro
4
vitro approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!