The analytical applications of antibodies are often associated with their immobilization on different carriers, which is accompanied by a loss of antigen-binding activity for a sufficient proportion of the bound antibodies. In contrast to data on plain carriers, minimal data are available on the properties of antibodies on the surfaces of nanoparticles. Protein antigens have been predominantly investigated, for which space restrictions do not allow them to occupy all active sites of immobilized antibodies. This study considered a low-molecular-weight compound, fluorescein, as an antigen. Spherical gold nanoparticles with five different sizes, two differently charged forms of fluorescein, and three different levels of surface coverage by immobilized antibodies were tested. For gold nanoparticles with diameters from 14 to 35.5 nm with monolayers of immobilized antibodies, the percentage of molecules capable of binding carboxyfluorescein varied from 6% to 17%. The binding of aminofluorescein was more efficient; for gold nanoparticles with an average diameter of 21 nm, the percentage of active binding sites for the immobilized antibodies reached 27% compared with 13% for the carboxyfluorescein case. A fourfold reduction in the coverage of the nanoparticles' surface compared with that of the monolayer did not lead to reliable changes in the percentage of active binding sites. The obtained data demonstrate that an antigen's binding to immobilized antibodies is limited even for small antigens and depends on the size of the nanoparticles and the electrostatic repulsion near their surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10707089PMC
http://dx.doi.org/10.3390/ijms242316967DOI Listing

Publication Analysis

Top Keywords

immobilized antibodies
20
gold nanoparticles
16
antibodies
8
sites immobilized
8
percentage active
8
active binding
8
binding sites
8
immobilized
6
nanoparticles
6
binding
5

Similar Publications

MUC1 and glycan probing of CA19-9 captured biomarkers from cyst fluids and serum provides enhanced recognition of ovarian cancer.

Sci Rep

January 2025

Department of Life Technologies, Division of Biotechnology, University of Turku, Medisiina D, 5th floor, Kiinamyllynkatu 10, 20520, Turku, Finland.

Glycosylation changes of circulating proteins carrying the CA19-9 antigen may offer new targets for detection methods to be explored for the diagnosis of epithelial ovarian cancer (EOC). Search for assay designs for targets initially captured by a CA19-9 antigen reactive antibody from human body fluids by probing with fluorescent nanoparticles coated with lectins or antibodies to known EOC associated proteins. CA19-9 antigens were immobilized from ascites fluids, ovarian cyst fluids or serum samples using monoclonal antibody C192 followed by probing of carrier proteins using anti-MUC16, anti-MUC1 and, anti STn antibodies and seven lectins, all separately coated on nanoparticles.

View Article and Find Full Text PDF

Aptamer-antibody sandwich immunosensor for electrochemical detection of FT4.

Mikrochim Acta

January 2025

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang, 050018, P. R. China.

An aptamer-antibody sandwich electrochemical immunosensor was studied. FeO/MWCNTs-COOH/Nafion was modified and fixed on a glassy carbon electrode to amplify electrical signals. The antibody was coupled with AuNPs to form conjugates.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) is primarily associated with non-human-primates (NHPs) in Africa, which also infect humans. Since its introduction to Brazil in 2014, CHIKV has predominantly thrived in urban cycles, involving Aedes aegypti mosquitoes. Limited knowledge exists regarding CHIKV occurrence and implications in rural and sylvatic cycles where neotropical NHPs are potential hosts, from which we highlight Leontopithecus chrysomelas (Kuhl, 1820), the golden-headed lion tamarin (GHLT), an endangered species endemic to the Atlantic Forest (AF) in Southern Bahia State, Brazil.

View Article and Find Full Text PDF

A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein biomolecules are immobilized on a quantum dots-polypyrrole nanocomposite in the improved electrode.

View Article and Find Full Text PDF

Enhancing the Bothropic Antivenom through a Reverse Antivenomics Approach.

J Proteome Res

January 2025

Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-901, Brazil.

Antivenoms are the only effective treatment for snakebite envenomation and have saved countless lives over more than a century. Despite their value, antivenoms present risks of adverse reactions. Current formulations contain a fraction of nonspecific antibodies and serum proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!