Biodegradable Polymers in Biomedical Applications: A Review-Developments, Perspectives and Future Challenges.

Int J Mol Sci

Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Licealna 9 Street, 65-417 Zielona Gora, Poland.

Published: November 2023

Biodegradable polymers are materials that, thanks to their remarkable properties, are widely understood to be suitable for use in scientific fields such as tissue engineering and materials engineering. Due to the alarming increase in the number of diagnosed diseases and conditions, polymers are of great interest in biomedical applications especially. The use of biodegradable polymers in biomedicine is constantly expanding. The application of new techniques or the improvement of existing ones makes it possible to produce materials with desired properties, such as mechanical strength, controlled degradation time and rate and antibacterial and antimicrobial properties. In addition, these materials can take virtually unlimited shapes as a result of appropriate design. This is additionally desirable when it is necessary to develop new structures that support or restore the proper functioning of systems in the body.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10707259PMC
http://dx.doi.org/10.3390/ijms242316952DOI Listing

Publication Analysis

Top Keywords

biodegradable polymers
12
biomedical applications
8
polymers biomedical
4
applications review-developments
4
review-developments perspectives
4
perspectives future
4
future challenges
4
challenges biodegradable
4
materials
4
polymers materials
4

Similar Publications

Background: Resveratrol (RSV) is a natural polyphenol that offers antioxidant, anti-inflammatory, and chemopreventive benefits. This project determined the ability of RSV-loaded nanoparticles (NP) to inhibit the growth of lung tumor spheroids in vitro.

Methods: RSV was encapsulated in NP comprised of the biodegradable polymer, acetalated dextran.

View Article and Find Full Text PDF

Nanocarriers for Delivery of Anticancer Drugs: Current Developments, Challenges, and Perspectives.

Pharmaceutics

November 2024

Department of Cell Biology and Molecular Genetics, Sri Devraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research, Kolar 563103, India.

Cancer, the most common condition worldwide, ranks second in terms of the number of human deaths, surpassing cardiovascular diseases. Uncontrolled cell multiplication and resistance to cell death are the traditional features of cancer. The myriad of treatment options include surgery, chemotherapy, radiotherapy, and immunotherapy to treat this disease.

View Article and Find Full Text PDF

Blending poly(3-hydroxybutyrate) (PHB) with other polymers could be a rapid and accessible solution to overcome some of its drawbacks. In this work, PHB was modified with microfibrillated cellulose (MC) and a thermoplastic polyurethane containing biodegradable segments (PU) by two routes, using a masterbatch and by direct mixing. The PU and MC modifiers improved the thermal stability of PHB by up to 13 °C and slightly decreased its melt viscosity and crystallinity, thus improving the melt processability.

View Article and Find Full Text PDF

Lactic acid (LA) is a versatile, optically active compound with applications across the food, cosmetics, pharmaceutical, and chemical industries, largely driven by its role in producing biodegradable polylactic acid (PLA). Due to its abundance, lignocellulosic biomass is a promising and sustainable resource for LA production, although media derived from these matrices are often rich in xylose and contain growth inhibitors. This study investigates LA production using a xylose-rich medium derived from DC stalks treated through steam explosion and enzymatic hydrolysis.

View Article and Find Full Text PDF

Characterization of Composites from Post-Consumer Polypropylene and Oilseed Pomace Fillers.

Polymers (Basel)

December 2024

Department of Technology and Entrepreneurship in Wood Industry, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland.

This study investigates the properties of composites produced using post-consumer polypropylene (PP) reinforced with lignocellulosic fillers from (black cumin) and rapeseed pomace. Using agri-food by-products like pomace supports waste management efforts and reduces the demand for wood in wood-plastic composites. The composite production method combined extrusion and hot flat pressing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!