The p53 protein is a transcriptional regulatory factor and many of its functions require that it forms a tetrameric structure. Although the tetramerization domain of mammalian p53 proteins (p53TD) share significant sequence similarities, it was recently shown that the tree shrew p53TD is considerably more thermostable than the human p53TD. To determine whether other mammalian species display differences in this domain, we used biophysical, functional, and structural studies to compare the properties of the p53TDs from six mammalian model organisms (human, tree shrew, guinea pig, Chinese hamster, sheep, and opossum). The results indicate that the p53TD from the opossum and tree shrew are significantly more stable than the human p53TD, and there is a correlation between the thermostability of the p53TDs and their ability to activate transcription. Structural analysis of the tree shrew and opossum p53TDs indicated that amino acid substitutions within two distinct regions of their p53TDs can dramatically alter hydrophobic packing of the tetramer, and in particular substitutions at positions corresponding to F341 and Q354 of the human p53TD. Together, the results suggest that subtle changes in the sequence of the p53TD can dramatically alter the stability, and potentially lead to important changes in the functional activity, of the p53 protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10706167 | PMC |
http://dx.doi.org/10.3390/ijms242316620 | DOI Listing |
Bone Res
January 2025
State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
Intervertebral disc degeneration (IDD), osteoarthritis (OA), and osteoporosis (OP) are common musculoskeletal disorders (MSDs) with similar age-related risk factors, representing the leading causes of disability. However, successful therapeutic development and translation have been hampered by the lack of clinically-relevant animal models. In this study, we investigated the potential suitability of the tree shrew, a small mammal with a close genetic relationship to primates, as a new animal model for MSDs.
View Article and Find Full Text PDFbioRxiv
December 2024
Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
Neocortex expansion has a concerted relationship with folding, underlying evolution of human cognitive functions. However, molecular mechanisms underlying this significant evolutionary process remains unknown. Here, using tree shrew as an outgroup of primates, we identify a new regulator which acquired its expression before the emergence of primates.
View Article and Find Full Text PDFBMC Biol
November 2024
Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, USA.
Research (Wash D C)
November 2024
Department of Anesthesiology, Research Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
Tree shrews (TSs) possess a highly developed visual system. Here, we establish an age-related single-cell RNA sequencing atlas of retina cells from 15 TSs, covering 6 major retina cell classes and 3 glial cell types. An age effect is observed on the cell subset composition and gene expression pattern.
View Article and Find Full Text PDFACS Omega
November 2024
Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China.
The number of cationic residues and net charge are critical for the activity of antimicrobial peptides (AMPs) due to their role in facilitating initial electrostatic interactions with negatively charged bacterial membranes. A cathelicidin AMP (TC-33) has been identified from the Chinese tree shrew in our previous work, which exhibited weak antimicrobial activity, likely due to its moderately cationic nature. In the current study, based on TC-33, we designed a novel AMP by peptide truncation and Glu substitutions to increase its net cationic charge from +4 to +8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!