Heat stress is a major abiotic stress that can cause serious losses of a crop. Our previous work identified a gene involved in heat stress tolerance in wheat, . To further investigate its mechanisms, in the present study, RNAi-silenced transgenic wheat and the wild type were comparatively analyzed at both the seedling and adult stages, with or without heat stress, using transcriptome sequencing. A total of 15,549 differentially expressed genes (DEGs) were identified at the adult stage and 20,535 DEGs were detected at the seedling stage. After heat stress, an enrichment of pathways such as phytohormones and mitogen-activated protein kinase signaling was mainly found in the seedling stage, and pathways related to metabolism, glycerophospholipid metabolism, circadian rhythms, and ABC transporter were enriched in the adult stage. Auxin and abscisic acid were downregulated in the seedling stage and vice versa in the adult stage; and the , , and no apical meristem gene families were downregulated in the seedling stage in response to heat stress and upregulated in the adult stage in response to heat stress. This study deepens our understanding of the mechanisms of in regard to heat stress in wheat at the seedling and adult stages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10706844PMC
http://dx.doi.org/10.3390/ijms242316583DOI Listing

Publication Analysis

Top Keywords

heat stress
28
adult stage
16
seedling stage
16
seedling adult
12
adult stages
12
heat
8
stress
8
stage
8
downregulated seedling
8
stage response
8

Similar Publications

Background: Continuous fermentation offers advantages in improving production efficiency and reducing costs, making it highly competitive for industrial ethanol production. A key requirement for Saccharomyces cerevisiae strains used in this process is their tolerance to high ethanol concentrations, which enables them to adapt to continuous fermentation conditions. To explore how yeast cells respond to varying levels of ethanol stress during fermentation, a two-month continuous fermentation was conducted.

View Article and Find Full Text PDF

Yersinia enterocolitica causes food-borne gastroenteritis. However, little is known about the genetic diversity and pathogenic potential of Y. enterocolitica in different food commodities.

View Article and Find Full Text PDF

Heat stress enhances the expression of METTL3 to mediate N6-methyladenosine modification of SOS2 and NLRP3 inflammasome activation in boar Sertoli cells.

J Hazard Mater

January 2025

Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, PR China. Electronic address:

Heat stress negatively affects pig production by disrupting the immune homeostasis of Sertoli cells (SCs), which compromises sperm quality, culminating in male infertility. Herein, we aimed to study the mechanism by which the NLRP3 inflammasome is activated by heat stress through N6-methyladenosine (mA) modification regulation in SCs. Initially, it was found that heat stress (44°C, 30 min) markedly activated ERK1/2 signaling, which subsequently promoted NLRP3 inflammasome activation and inflammatory cytokine release from SCs.

View Article and Find Full Text PDF

Small-molecule activators of NRF1 transcriptional activity prevent protein aggregation.

Biomed Pharmacother

January 2025

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic; Department of Genetics and Microbiology, Charles University and Research Center BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic. Electronic address:

Intracellular protein aggregation causes proteotoxic stress, underlying highly debilitating neurodegenerative disorders in parallel with decreased proteasome activity. Nevertheless, under such stress conditions, the expression of proteasome subunits is upregulated by Nuclear Factor Erythroid 2-related factor 1 (NRF1), a transcription factor that is encoded by NFE2L1. Activating the NRF1 pathway could accordingly delay the onset of neurodegenerative and other disorders with impaired cell proteostasis.

View Article and Find Full Text PDF

Saving coral reefs: significance and biotechnological approaches for coral conservation.

Adv Biotechnol (Singap)

November 2024

Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.

Coral reefs are highly productive ecosystems that provide valuable services to coastal communities worldwide. However, both local and global anthropogenic stressors, threaten the coral-algal symbiosis that enables reef formation. This breakdown of the symbiotic relationship, known as bleaching, is often triggered by cumulative cell damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!