AI Article Synopsis

  • Aversive conditioning can diminish the pleasure associated with comfort meals, and this study aimed to see if cognitive interventions could restore that pleasure.
  • The research involved 12 healthy women, measuring their responses to a comfort meal before, after conditioning (which made the meal less enjoyable), and after a cognitive intervention that provided an explanation of the conditioning.
  • Results showed that the cognitive intervention significantly improved participants' enjoyment and digestive well-being after eating the meal, while the control group saw no such improvements, indicating that the negative effects of aversive conditioning can be reversed.

Article Abstract

Background: Aversive conditioning weakens the gratifying value of a comfort meal. The aim was to determine the effect of a cognitive intervention to reverse aversive conditioning and restore hedonic postprandial response.

Methods: This was a randomized, sham-controlled, single-blind, parallel study that was conducted on 12 healthy women ( = 6 in each group). The reward value of a comfort meal was measured on different days: at initial exposure, after aversive conditioning (administration of the same meal with a masked fat overload on the previous day) and after a cognitive intervention (disclosing the aversive conditioning paradigm in the test group vs. no explanation in the control group). The primary outcome, digestive wellbeing, was determined using graded scales at regular intervals before and after ingestion.

Results: At initial exposure, the comfort meal produced a rewarding experience that was impaired using aversive conditioning; upon re-exposure to the original meal, the cognitive intervention increased meal wanting and liking; improved digestive wellbeing and mood; tended to reduce postprandial satiety, bloating/fullness; and abolished discomfort/pain, thereby restoring the hedonic value of the comfort meal. By contrast, sham intervention had no effects, and the postprandial sensations remained like the responses to the offending meal.

Conclusion: In this proof-of-concept study, we demonstrate that in healthy women, a mild, short-term acquired aversion to a comfort meal can be reversed using a cognitive intervention.

Clinicaltrials: gov ID: NCT05897411.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708304PMC
http://dx.doi.org/10.3390/nu15234962DOI Listing

Publication Analysis

Top Keywords

aversive conditioning
20
comfort meal
20
cognitive intervention
16
parallel study
8
meal
8
healthy women
8
initial exposure
8
digestive wellbeing
8
cognitive
5
intervention
5

Similar Publications

The nucleus accumbens (NAc) is a key brain region for motivated behaviors, yet how distinct neuronal populations encode appetitive or aversive stimuli remains undetermined. Using microendoscopic calcium imaging in mice, we tracked NAc shell D1- or D2-medium spiny neurons' (MSNs) activity during exposure to stimuli of opposing valence and associative learning. Despite drift in individual neurons' coding, both D1- and D2-population activity was sufficient to discriminate opposing valence unconditioned stimuli, but not predictive cues.

View Article and Find Full Text PDF

Aversive social learning with a dead conspecific is achieved by Pavlovian conditioning in crickets.

Neurobiol Learn Mem

December 2024

Faculty of Science, Hokkaido University Sapporo 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan. Electronic address:

Social learning, learning from other individuals, has been demonstrated in many animals, including insects, but its detailed neural mechanisms remain virtually unknown. We showed that crickets (Gryllus bimaculatus) exhibit aversive social learning with a dead conspecific. When a learner cricket was trained to observe a dead cricket on a drinking apparatus, the learner avoided the odor of that apparatus thereafter.

View Article and Find Full Text PDF

Presenting unpaired unconditional stimuli (US) during extinction training reduces the renewal of conditional fear due to context change. The present study investigated whether this reduced return of fear is specific to the aversive US presented during acquisition or can also be observed after extinction with unpaired presentations of another aversive or of a non-aversive US. Using an ABA renewal paradigm that trained extinction in a context different from that of the acquisition, renewal and re-acquisition test phases, participants received five unpaired presentations of either the aversive US used during acquisition (Group Aversive-Same), an aversive US not presented during acquisition (Group Aversive-Different) or a non-aversive US (Group Non-aversive) during extinction training.

View Article and Find Full Text PDF

Monosynaptic ventral tegmental area glutamate projections to the locus coeruleus enhance aversive processing.

bioRxiv

December 2024

Department of Anesthesiology, Center for Clinical Pharmacology, Washington University Pain Center, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.

Distinct excitatory synaptic inputs to the locus coeruleus (LC) modulate behavioral flexibility. Here we identify a novel monosynaptic glutamatergic input to the LC from the ventral tegmental area (VTA). We show robust VTA axonal projections provide direct glutamatergic transmission to LC.

View Article and Find Full Text PDF

Affective processing is important for guiding behavior and its dysfunction can lead to several psychiatric illnesses, including depression and substance use disorders. Conditioned taste aversion (CTA) is used to study learned shifts in affect, and taste reactivity (TR) can effectively track the hedonic properties of appetitive and aversive tastants before and after CTA. While the infralimbic cortex (IL) and its projections to the nucleus accumbens (NAc) shell play a key role in learned negative affect, this role is unique to males.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!