Iron is an essential micronutrient for athletes, intricately linked to their performance, by regulating cellular respiration and metabolism. Impaired iron levels in the body can significantly hinder athletic performance. The increased demand for iron due to exercise, coupled with potential dietary iron insufficiencies, particularly among endurance athletes, amplifies the risk of iron deficiency. Moreover, prolonged exercise can impact iron absorption, utilization, storage, and overall iron concentrations in an athlete. On the contrary, iron overload may initially lead to enhanced performance; however, chronic excess iron intake or underlying genetic conditions can lead to detrimental health consequences and may negatively impact athletic performance. Excess iron induces oxidative damage, not only compromising muscle function and recovery, but also affecting various tissues and organs in the body. This narrative review delineates the complex relationship between exercise and iron metabolism, and its profound effects on athletic performance. The article also provides guidance on managing iron intake through dietary adjustments, oral iron supplementation for performance enhancement in cases of deficiency, and strategies for addressing iron overload in athletes. Current research is focused on augmenting iron absorption by standardizing the route of administration while minimizing side effects. Additionally, there is ongoing work to identify inhibitors and activators that affect iron absorption, aiming to optimize the body's iron levels from dietary sources, supplements, and chelators. In summary, by refining the athletic diet, considering the timing and dosage of iron supplements for deficiency, and implementing chelation therapies for iron overload, we can effectively enhance athletic performance and overall well-being.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708480 | PMC |
http://dx.doi.org/10.3390/nu15234945 | DOI Listing |
Am J Sports Med
January 2025
Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
Background: Selective androgen receptor modulators (SARMs) are small-molecule compounds that exert agonist and antagonist effects on androgen receptors in a tissue-specific fashion. Because of their performance-enhancing implications, SARMs are increasingly abused by athletes. To date, SARMs have no Food and Drug Administration approved use, and recent case reports associate the use of SARMs with deleterious effects such as drug-induced liver injury, myocarditis, and tendon rupture.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
Altitude training has been widely adopted. This study aimed to establish a mice model to determine the time point for achieving the best endurance at the lowland. C57BL/6 and BALB/c male mice were used to establish a mice model of hypoxic training with normoxic training mice, hypoxic mice, and normoxic mice as controls.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Physiological Sciences, Universitat de Barcelona, 08907, Barcelona, Spain.
The connection between the respiratory capacity of skeletal muscle mitochondria and athletic performance is widely acknowledged in contemporary research. Building on a solid foundation of prior studies, current research has fostered an environment where scientists can effectively demonstrate how a tailored regimen of exercise intensity, duration, and frequency significantly boosts mitochondrial function within skeletal muscles. The range of exercise modalities is broad, spanning from endurance and high-intensity interval training to resistance-based exercises, allowing for an in-depth exploration of effective strategies to enhance mitochondrial respiratory capacity-a key factor in improving exercise performance, in other words offering a better skeletal muscle capacity to cope with exercise demands.
View Article and Find Full Text PDFBMC Sports Sci Med Rehabil
January 2025
Department of Sports Studies, Faculty of Educational Studies, Universiti Putra Malaysia, Serdang, Malaysia.
Background: The evidence indicates that functional training is beneficial for athletes' physical and technical performance. However, a systematic review of the effects of functional training on athletes' physical and technical performance is lacking. Therefore, this study uses a literature synthesis approach to evaluate the impact of functional training on the physical and technical performance of the athletic population and to extend and deepen the existing body of knowledge.
View Article and Find Full Text PDFBr J Sports Med
January 2025
Section Sports Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
This study aimed to establish consensus on injury risk factors in netball via a combined systematic review and Delphi method approach. A systematic search of databases (PubMed, Scopus, MEDLINE, SPORTDiscus and CINAHL) was conducted from inception until June 2023. Twenty-four risk factors were extracted from 17 studies and combined with a three-round Delphi approach to achieve consensus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!