The use of multiparametric magnetic resonance imaging (mpMRI)-derived radiomics has the potential to offer noninvasive, imaging-based biomarkers for the identification of subvisual characteristics indicative of a poor oncologic outcome. The present study, therefore, seeks to develop, validate, and assess the performance of an MRI-derived radiomic model for the prediction of prostate cancer (PC) recurrence following radical prostatectomy (RP) with curative intent. mpMRI imaging was obtained from 251 patients who had undergone an RP for the treatment of localized prostate cancer across two institutions and three surgeons. All patients had a minimum of 2 years follow-up via prostate-specific antigen serum testing. Each prostate mpMRI was individually reviewed, and the prostate was delineated as a single slice (ROI) on axial T2 high-resolution image sets. A total of 924 radiomic features were extracted and tested for stability via intraclass correlation coefficient (ICC) following image normalization via histogram matching. Fourteen important and nonredundant features were found to be predictors of PC recurrence at a mean ± SD of 3.2 ± 2.2 years post-RP. Five-fold, ten-run cross-validation of the model containing these fourteen features yielded an area under the curve (AUC) of 0.89 ± 0.04 in the training set ( = 225). In comparison, the University of California San Fransisco Cancer of the Prostate Risk Assessment score (UCSF-CAPRA) and Memorial Sloan Kettering Cancer Center (MSKCC) Pre-Radical prostatectomy nomograms yielded AUC of 0.66 ± 0.05 and 0.67 ± 0.05, respectively ( < 0.01). When the radiomic model was applied to the test set ( = 26), AUC was 0.78; sensitivity, specificity, positive predictive value, and negative predictive value were 60%, 86%, 52%, and 89%, respectively. Accuracy in predicting PC recurrence was 81%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10707463PMC
http://dx.doi.org/10.3390/jcm12237322DOI Listing

Publication Analysis

Top Keywords

radiomic model
12
prostate cancer
12
cancer recurrence
8
recurrence radical
8
radical prostatectomy
8
prostate
6
cancer
5
multi-institutional development
4
development validation
4
radiomic
4

Similar Publications

Objective: The aim of this study was to develop and validate predictive models for perineural invasion (PNI) in gastric cancer (GC) using clinical factors and radiomics features derived from contrast-enhanced computed tomography (CE-CT) scans and to compare the performance of these models.

Methods: This study included 205 GC patients, who were randomly divided into a training set (n=143) and a validation set (n=62) in a 7:3 ratio. Optimal radiomics features were selected using the least absolute shrinkage and selection operator (LASSO) algorithm.

View Article and Find Full Text PDF

Rationale And Objectives: Inflammation and immune biomarkers can promote angiogenesis and proliferation and metastasis of esophageal squamous cell carcinoma (ESCC). The degree of pathological grade reflects the tumor heterogeneity of ESCC. The purpose is to develop and validate a nomogram based on enhanced CT multidimensional radiomics combined with inflammatory immune score (IIS) for predicting poorly differentiated ESCC.

View Article and Find Full Text PDF

Integration of Deep Learning and Sub-regional Radiomics Improves the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients.

Acad Radiol

January 2025

Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China (X.W., C.C., W.C., Y.G., X.L., X.J.); Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou 325000, China (X.W., J.W., C.C., W.C., Y.G., K.G., Y.C., Y.S., J.C., X.L., X.J.). Electronic address:

Rationale And Objectives: The precise prediction of response to neoadjuvant chemoradiotherapy is crucial for tailoring perioperative treatment in patients diagnosed with locally advanced rectal cancer (LARC). This retrospective study aims to develop and validate a model that integrates deep learning and sub-regional radiomics from MRI imaging to predict pathological complete response (pCR) in patients with LARC.

Materials And Methods: We retrospectively enrolled 768 eligible participants from three independent hospitals who had received neoadjuvant chemoradiotherapy followed by radical surgery.

View Article and Find Full Text PDF

Objective: To assess the efficacy of computed tomography (CT)-based radiomics nomogram in predicting perineural invasion (PNI) in patients with hypopharyngeal squamous cell carcinoma (HPSCC).

Materials And Methods: Overall, 146 patients were retrospectively recruited and divided into training and test cohorts at a 7:3 ratio. Radiomics features were extracted and delta and absolute delta radiomics features were calculated.

View Article and Find Full Text PDF

PADS-Net: GAN-based radiomics using multi-task network of denoising and segmentation for ultrasonic diagnosis of Parkinson disease.

Comput Med Imaging Graph

January 2025

The SMART (Smart Medicine and AI-based Radiology Technology) Lab, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China; Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, China. Electronic address:

Parkinson disease (PD) is a prevalent neurodegenerative disorder, and its accurate diagnosis is crucial for timely intervention. We propose the PArkinson disease Denoising and Segmentation Network (PADS-Net), to simultaneously denoise and segment transcranial ultrasound images of midbrain for accurate PD diagnosis. The PADS-Net is built upon generative adversarial networks and incorporates a multi-task deep learning framework aimed at optimizing the tasks of denoising and segmentation for ultrasound images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!