During a fire, ordinary Portland cement (OPC) systems lose their mechanical properties. For this reason, it is important to find a way to protect it. This study suggested alternative uses of slag and phosphogypsum to produce coatings for fire-resistant applications. Five compositions of 10 mm thick alkali-activated slag coatings were investigated. In these compositions, different amounts of phosphogypsum (1%, 3%, 5%, 7%, and 10%) were used. In the first stage of this study, the residual compressive strength of samples with the coatings based on alkali-activated slag was compared to the results of OPC concrete samples without coatings. The experimental results showed that a higher residual compressive strength of 33.2-47.3 MPa OPC concrete was achieved for the samples with coatings. Meanwhile, the residual compressive strength of the uncoated samples was 32.37 MPa. In the second stage, OPC concrete samples were reinforced with fiberglass polymer (FRP) rods, and they had a similar positive effect on alkali-activated coatings. After exposure to higher temperatures, the pullout tests of the glass FRP bars showed that the adhesion strength was (9.44 MPa) 43.9% higher for the samples with coatings compared to the samples without coatings (6.56 MPa). Therefore, a higher bond strength can be maintained between concrete and FRP bars. Alkali-activated slag with 3% phosphogypsum can be used for the production of fire-resistant coating. These coatings could protect OPC concrete and reinforced concrete with glass FRP bars from fire.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10707175PMC
http://dx.doi.org/10.3390/ma16237477DOI Listing

Publication Analysis

Top Keywords

opc concrete
20
samples coatings
20
alkali-activated slag
16
residual compressive
12
compressive strength
12
frp bars
12
coatings
10
slag coatings
8
slag phosphogypsum
8
concrete samples
8

Similar Publications

The degradation of concrete caused by sulfate attack poses a significant challenge to its durability. Using nanomaterials to enhance the mechanical and durability properties of concrete is a promising solution. A study of the durability of nano-alumina (NA)-modified concrete by sulfate erosion was carried out.

View Article and Find Full Text PDF

The initial investigation evaluates the feasibility of ultra high performance concrete (UHPC) as a material for reusable molds in aluminum casting. Two specific UHPC formulations were investigated: one based on ordinary Portland cement (OPC) and another utilizing alkali-activated materials (AAM). The study focused on investigating the surface through roughness measurements and the thermal durability through repeated casting cycles.

View Article and Find Full Text PDF

This study examines the impact of sodium citrate and a plasticizing additive, along with their sequential introduction into a cement slurry or concrete mix, on the heat evolution of the cement slurry, the microstructure, phase composition of the cement paste, and the compressive strength of fine-grained concrete. The binder used in this research was a blended binder consisting of 90% Portland cement and 10% calcium aluminate cement. This type of binder is characterized by an increased heat evolution and accelerated setting time.

View Article and Find Full Text PDF
Article Synopsis
  • The paper compares low-calcium fly ash-based geopolymer concrete with traditional OPC-based concrete in terms of performance, microstructure, and environmental effects.
  • Geopolymer concrete exhibited 11-16% greater strength, superior resistance to sulfate and acid attacks, but a slight strength reduction from increasing binder dosage beyond certain limits.
  • It is more environmentally friendly, requiring 25-33% less energy and producing 14-28% less CO2 emissions compared to OPC, although the use of alkaline activators in geopolymer production contributes to higher emissions in that specific area.
View Article and Find Full Text PDF
Article Synopsis
  • * PTWA was tested as a partial replacement for ordinary Portland cement in concrete by varying its ratio while keeping ground blast furnace slag constant, and a series of experiments analyzed both mineralogical properties and mechanical performance over time.
  • * Results showed that while using PTWA reduced setting times of the concrete mixtures, it also led to decreased overall performance compared to standard mixes, suggesting a complicated relationship that could potentially benefit the environment when combined with other materials like GBFS.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!