Currently, in the context of biorefinery and bioeconomy, lignocellulosic biomass is increasingly used to produce biofuels, biochemicals and other value-added products. Microwaves and ultrasound are emerging techniques that enable efficient and environmentally sustainable routes in the transformation of lignocellulosic biomass. This review presents some of the most important works published in the last few years on the application of microwaves and/or ultrasound in lignocellulosic materials pretreatment and can be used as a starting point for research into this theme. This review is divided into four parts. In Part I, the theoretical fundamentals of microwave and ultrasound treatments are reviewed. Dielectric constants for biomass, factors that influence pretreatment, are some of the subjects addressed. In Part II, the effects that these techniques have on lignocellulosic biomass (on the size and surface area of the particle; on the content of lignin, hemicellulose and cellulose; on the crystallinity index of cellulose; on the effect of solubilization of organic matter; on hydrolysis and reduction of sugars) are discussed. In Part III, emphasis is given to the contribution of microwaves and ultrasound in obtaining value-added products. In this context, several examples of liquefaction and extraction procedures are presented. Part IV describes examples of performing sonocatalysis on lignocellulosic biomass to obtain value-added products, such as furfural, whose production is significantly reduced by ultrasound treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10706977PMC
http://dx.doi.org/10.3390/ma16237351DOI Listing

Publication Analysis

Top Keywords

lignocellulosic biomass
16
microwaves ultrasound
12
value-added products
12
ultrasound emerging
8
emerging techniques
8
techniques lignocellulosic
8
lignocellulosic materials
8
lignocellulosic
6
biomass
5
ultrasound
5

Similar Publications

Fungal lignocellulolytic enzymes: an in silico and full factorial design approach.

World J Microbiol Biotechnol

January 2025

Graduate Program in Bioscience Technologies, Universidade Tecnológica Federal do Paraná, Toledo, Paraná, Brazil.

Efficient degradation of lignocellulosic biomass is key for the production of value-added products, contributing to sustainable and renewable solutions. This study employs a two-step approach to evaluate lignocellulolytic enzymes of Ceratocystis paradoxa, Colletotrichum falcatum, and Sporisorium scitamineum. First, an in silico genomic analysis was conducted to predict the potential enzyme groups produced by these fungi.

View Article and Find Full Text PDF

Biomass, as a source of lignocellulose, can be valorized into carbon micro/nanofibers for adsorbing greenhouse gas (GHGs) emissions, especially CO. This article is derived from systematic evidence evaluation of published studies, presenting new, innovative, and systemic approaches to lignocellulose-based carbon micro/nanofiber studies. The review covers a general overview of carbon micro/nanofiber studies, mapping chronicles of the studies, carbon micro/nanofiber types for CO uptake, carbon micro/nanofibers fabrication and characterization, obtained carbonaceous material activation and performances, regulatory frameworks, and sustainability.

View Article and Find Full Text PDF

Green process for xylo-oligosaccharide production from acetic acid hydrolysis of sugarcane bagasse by an integrated membrane technology and activated carbon adsorption.

J Environ Manage

January 2025

State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

Xylooligosaccharides (XOS), consisting 2-6 xylose residues, are a new type of prebiotic and functional oligosaccharides, and can usually be produced from the xylan-riched lignocellulosic biomass by acetic acid (HAc) hydrolysis, while the waste HAc was a problem to the environment. In this study, the main aim was to recover and reuse the waste HAc in XOS production. First, it was found that a temperature of 190 °C and a hydrolysis time of 60 min were favorable for XOS production by HAc hydrolysis, and the by-products xylose and furfural were the main inhibitors, hindering the reuse of the waste HAc.

View Article and Find Full Text PDF

Lignin-coordinated niobium-based catalyst for the efficient conversion of industrial lignin in choline chloride-lactic acid integrated with ethanol deep eutectic solvent.

Int J Biol Macromol

January 2025

Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China. Electronic address:

Catalytic depolymerization is a favorable option for the valorization of industrial lignin. In this study, a new strategy was demonstrated for the efficient reductive depolymerization of industrial lignin based on a complex solvent of choline chloride-lactic acid (ChCl-LA) DES integrated with ethanol and a C-supported N-doped niobium-based catalyst with industrial lignin as carbon source (NBC@N-LC). It was found that the introduction of ethanol significantly improved the conversion of industrial lignin in ChCl-LA.

View Article and Find Full Text PDF

With rising demand for wood products and reduced wood harvesting due to the European Green Deal, alternative lignocellulosic materials for insulation are necessary. In this work, we manufactured reference particleboard from industrial particles and fifteen different board variants from alternative lignocellulosic plants material, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!