Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vehicle type and brand information constitute a crucial element in intelligent transportation systems (ITSs). While numerous appearance-based classification methods have studied frontal view images of vehicles, the challenge of multi-pose and multi-angle vehicle distribution has largely been overlooked. This paper proposes an appearance-based classification approach for multi-angle vehicle information recognition, addressing the aforementioned issues. By utilizing faster regional convolution neural networks, this method automatically captures crucial features for vehicle type and brand identification, departing from traditional handcrafted feature extraction techniques. To extract rich and discriminative vehicle information, ZFNet and VGG16 are employed. Vehicle feature maps are then imported into the region proposal network and classification location refinement network, with the former generating candidate regions potentially containing vehicle targets on the feature map. Subsequently, the latter network refines vehicle locations and classifies vehicle types. Additionally, a comprehensive vehicle dataset, Car5_48, is constructed to evaluate the performance of the proposed method, encompassing multi-angle images across five vehicle types and 48 vehicle brands. The experimental results on this public dataset demonstrate the effectiveness of the proposed approach in accurately classifying vehicle types and brands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708788 | PMC |
http://dx.doi.org/10.3390/s23239569 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!