A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Multi-Angle Appearance-Based Approach for Vehicle Type and Brand Recognition Utilizing Faster Regional Convolution Neural Networks. | LitMetric

AI Article Synopsis

  • Vehicle type and brand identification is essential for intelligent transportation systems, but existing methods often neglect the complexities of recognizing vehicles from multiple angles.
  • This paper introduces a new approach that uses faster regional convolution neural networks to automatically identify vehicle types and brands by analyzing crucial features from images instead of relying on manual feature extraction.
  • A new dataset called Car5_48 was created to test this method, which includes diverse multi-angle images of different vehicle types and brands, showing that this approach significantly improves classification accuracy.

Article Abstract

Vehicle type and brand information constitute a crucial element in intelligent transportation systems (ITSs). While numerous appearance-based classification methods have studied frontal view images of vehicles, the challenge of multi-pose and multi-angle vehicle distribution has largely been overlooked. This paper proposes an appearance-based classification approach for multi-angle vehicle information recognition, addressing the aforementioned issues. By utilizing faster regional convolution neural networks, this method automatically captures crucial features for vehicle type and brand identification, departing from traditional handcrafted feature extraction techniques. To extract rich and discriminative vehicle information, ZFNet and VGG16 are employed. Vehicle feature maps are then imported into the region proposal network and classification location refinement network, with the former generating candidate regions potentially containing vehicle targets on the feature map. Subsequently, the latter network refines vehicle locations and classifies vehicle types. Additionally, a comprehensive vehicle dataset, Car5_48, is constructed to evaluate the performance of the proposed method, encompassing multi-angle images across five vehicle types and 48 vehicle brands. The experimental results on this public dataset demonstrate the effectiveness of the proposed approach in accurately classifying vehicle types and brands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708788PMC
http://dx.doi.org/10.3390/s23239569DOI Listing

Publication Analysis

Top Keywords

vehicle
14
vehicle type
12
type brand
12
vehicle types
12
utilizing faster
8
faster regional
8
regional convolution
8
convolution neural
8
neural networks
8
appearance-based classification
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: