Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionbbjkp76t9i876i0ks6vgial373festmk): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Previous camera self-calibration methods have exhibited certain notable shortcomings. On the one hand, they either exclusively emphasized scene cues or solely focused on vehicle-related cues, resulting in a lack of adaptability to diverse scenarios and a limited number of effective features. Furthermore, these methods either solely utilized geometric features within traffic scenes or exclusively extracted semantic information, failing to comprehensively consider both aspects. This limited the comprehensive feature extraction from scenes, ultimately leading to a decrease in calibration accuracy. Additionally, conventional vanishing point-based self-calibration methods often required the design of additional edge-background models and manual parameter tuning, thereby increasing operational complexity and the potential for errors. Given these observed limitations, and in order to address these challenges, we propose an innovative roadside camera self-calibration model based on the Transformer architecture. This model possesses a unique capability to simultaneously learn scene features and vehicle features within traffic scenarios while considering both geometric and semantic information. Through this approach, our model can overcome the constraints of prior methods, enhancing calibration accuracy and robustness while reducing operational complexity and the potential for errors. Our method outperforms existing approaches on both real-world dataset scenarios and publicly available datasets, demonstrating the effectiveness of our approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708783 | PMC |
http://dx.doi.org/10.3390/s23239527 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!