Foreign object detection (FOD) is considered a key method for detecting objects in the air gap of a wireless charging system that could pose a risk due to strong inductive heating. This paper describes a novel method for the detection of metallic objects utilizing the principle of electric time domain reflectometry. Through an analytical, numerical and experimental investigation, two key parameters for the design of transmission lines are identified and investigated with respect to the specific constraints of inductive power transfer. For this purpose, a transient electromagnetic simulation model is established to obtain and compare the sensor impedance and reflection coefficients with experimental data. The measurement setup is based on parametrically designed sensors in laboratory scale, using an EUR 2 coin as an exemplary test object. Consequently, the proposed simulation model has been successfully validated in this study, providing a comprehensive quantitative and qualitative analysis of the major transmission line design parameters for such applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708816PMC
http://dx.doi.org/10.3390/s23239425DOI Listing

Publication Analysis

Top Keywords

numerical experimental
8
experimental investigation
8
foreign object
8
object detection
8
power transfer
8
simulation model
8
investigation time-domain-reflectometry-based
4
time-domain-reflectometry-based sensors
4
sensors foreign
4
detection wireless
4

Similar Publications

Unlabelled: High rates of childhood neurodisability are reported among the Roma, Europe's largest ethnic minority community. Interventions targeting early child development (ECD) during the first 2 years of life can improve neurodevelopmental outcomes in vulnerable children; however, evidence from Roma preschoolers is scarce. In a quasi-experimental observational study, we compared neurodevelopmental outcomes at age 2 years, measured on the INTERGROWTH-21st Project Neurodevelopmental Assessment (INTER-NDA), between Roma children receiving a community-based ECD intervention (RI, n = 98), and age- and sex-matched Roma and non-Roma children (RC, n = 99 and NRC, n = 54, respectively) who did not receive the intervention in Eastern Slovakia.

View Article and Find Full Text PDF

Trends in blood transfusion and causes of blood wastage: a retrospective analysis in a teaching hospital.

BMC Health Serv Res

January 2025

Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, 666 Buzih Road, Taichung, 40601, Taiwan.

Background: Blood is a vital medical resource that is sourced from primarily nonremunerated donations. As Taiwan faces an aging population, increasing medical demands pose new challenges to blood resource management. Trend analysis can improve blood supply chain management and allocate blood resources more efficiently and cost-effectively.

View Article and Find Full Text PDF

In order to systematically study the bending behavior of the connection joints of the disc-buckle type formwork support, the accurate numerical model of the disc-buckle type connection joints was obtained through the experimental on the bending behavior of the connection joints of the disc-buckle type, and the bending moment-rotation curve of the joints was verified. The analysis of the failure mode and stress distribution of the joints reveals the importance of the bending behavior of each component. By establishing an accurate numerical model of the joint, the accuracy of the bending experiment of the joint was verified, and the parametric analysis of the influence factors such as the depth of the wedge insertion the disk-plate, the initial position of the wedge insertion the disk-plate, the thickness of the wedge, material constitutive of the wedge and the thickness of the disk-plate was carried out to grasp the influence of the relevant parameters on the bending behavior of the joint.

View Article and Find Full Text PDF

In the majority of aerosol drug deposition modelling efforts, the particles are approximated by regular spheres. However, microscope images acquired after drug formulation available in the open literature suggest that their shape is not regular in most cases. This work aimed to combine experimental measurements and numerical simulations to reveal the shape factors of the particles of commercialized aerosol drugs and the effect of non-sphericity on the lung deposition distribution of these drugs.

View Article and Find Full Text PDF

Background And Objective: In clinical practice, valve-sparing aortic root replacement surgery primarily addresses left ventricular dysfunction in patients due to severe aortic regurgitation, but there is controversy regarding the choice of surgical technique. In order to investigate which type of valve-sparing aortic root replacement surgeries can achieve better blood flow conditions, this study examines the impact of changes in the geometric morphology of the aortic root on the hemodynamic environment through numerical simulation.

Methods: An idealized model of the aortic root was established based on data obtained from clinical measurements, including using the model of the aortic root without significant lesions as the control group (Model C), while using surgical models of leaflet reimplantation with tubular graft (Model T), leaflet reimplantation with Valsalva graft (Model V), and the Florida sleeve procedure (Model F) as the experimental groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!