Interpretation of neural activity in response to stimulations received from the surrounding environment is necessary to realize automatic brain decoding. Analyzing the brain recordings corresponding to visual stimulation helps to infer the effects of perception occurring by vision on brain activity. In this paper, the impact of arithmetic concepts on vision-related brain records has been considered and an efficient convolutional neural network-based generative adversarial network (CNN-GAN) is proposed to map the electroencephalogram (EEG) to salient parts of the image stimuli. The first part of the proposed network consists of depth-wise one-dimensional convolution layers to classify the brain signals into 10 different categories according to Modified National Institute of Standards and Technology (MNIST) image digits. The output of the CNN part is fed forward to a fine-tuned GAN in the proposed model. The performance of the proposed CNN part is evaluated via the visually provoked 14-channel MindBigData recorded by David Vivancos, corresponding to images of 10 digits. An average accuracy of 95.4% is obtained for the CNN part for classification. The performance of the proposed CNN-GAN is evaluated based on saliency metrics of SSIM and CC equal to 92.9% and 97.28%, respectively. Furthermore, the EEG-based reconstruction of MNIST digits is accomplished by transferring and tuning the improved CNN-GAN's trained weights.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708586PMC
http://dx.doi.org/10.3390/s23239351DOI Listing

Publication Analysis

Top Keywords

brain activity
8
performance proposed
8
brain
6
proposed
5
salient arithmetic
4
arithmetic data
4
data extraction
4
extraction brain
4
activity improved
4
improved deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!