An Experimental Platform for Tomographic Reconstruction of Tissue Images in Brightfield Microscopy.

Sensors (Basel)

Medical Image and Signal Processing Laboratory, Department of Biomedical Engineering, University of West Attica, Egaleo, 12243 Athens, Greece.

Published: November 2023

(1) Background: Reviewing biological material under the microscope is a demanding and time-consuming process, prone to diagnostic pitfalls. In this study, a methodology for tomographic imaging of tissue sections is presented, relying on the idea that each tissue sample has a finite thickness and, therefore, it is possible to create images at different levels within the sample, revealing details that would probably not be seen otherwise. (2) Methods: Optical slicing was possible by developing a custom-made microscopy stage controlled by an ARDUINO. The custom-made stage, besides the normal sample movements that it should provide along the x-, y-, and z- axes, may additionally rotate the sample around the horizontal axis of the microscope slide. This rotation allows the conversion of the optical microscope into a CT geometry, enabling optical slicing of the sample using projection-based tomographic reconstruction algorithms. (3) Results: The resulting images were of satisfactory quality, but they exhibited some artifacts, which are particularly evident in the axial plane images. (4) Conclusions: Using classical tomographic reconstruction algorithms at limited angles, it is possible to investigate the sample at any desired optical plane, revealing information that would be difficult to identify when focusing only on the conventional 2D images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708601PMC
http://dx.doi.org/10.3390/s23239344DOI Listing

Publication Analysis

Top Keywords

tomographic reconstruction
12
optical slicing
8
reconstruction algorithms
8
sample
6
images
5
experimental platform
4
tomographic
4
platform tomographic
4
reconstruction tissue
4
tissue images
4

Similar Publications

Purpose: Photon counting detectors offer promising advancements in computed tomography (CT) imaging by enabling the quantification and three-dimensional imaging of contrast agents and tissue types through simultaneous multi-energy projections from broad X-ray spectra. However, the accuracy of these decomposition methods hinges on precise composite spectral attenuation values that one must reconstruct from spectral micro-CT. Errors in such estimations could be due to effects such as beam hardening, object scatter, or detector sensor-related spectral distortions such as fluorescence.

View Article and Find Full Text PDF

Background And Objective: Cerebral aneurysms occur as balloon-like outpouchings in an artery, which commonly develop at the weak curved regions and bifurcations. When aneurysms are detected, understanding the risk of rupture is of immense clinical value for better patient management. Towards this, Fluid-Structure Interaction (FSI) studies can improve our understanding of the mechanics behind aneurysm initiation, progression, and rupture.

View Article and Find Full Text PDF

Background: This study investigates a multi-angle acquisition method aimed at improving image quality in organ-targeted PET detectors with planar detector heads. Organ-targeted PET technologies have emerged to address limitations of conventional whole-body PET/CT systems, such as restricted axial field-of-view (AFOV), limited spatial resolution, and high radiation exposure associated with PET procedures. The AFOV in organ-targeted PET can be adjusted to the organ of interest, minimizing unwanted signals from other parts of the body, thus improving signal collection efficiency and reducing the dose of administered radiotracer.

View Article and Find Full Text PDF

Superimposed Wavefront Imaging of Diffraction-enhanced X-rays: sparsity-aware CT reconstruction from limited-view projections.

Int J Comput Assist Radiol Surg

December 2024

High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan.

Purpose: In this paper, we describe an algebraic reconstruction algorithm with a total variation regularization (ART + TV) based on the Superimposed Wavefront Imaging of Diffraction-enhanced X-rays (SWIDeX) method to effectively reduce the number of projections required for differential phase-contrast CT reconstruction.

Methods: SWIDeX is a technique that uses a Laue-case Si analyzer with closely spaced scintillator to generate second derivative phase-contrast images with high contrast of a subject. When the projections obtained by this technique are reconstructed, a Laplacian phase-contrast tomographic image with higher sparsity than the original physical distribution of the subject can be obtained.

View Article and Find Full Text PDF

Bone Regeneration After Sinus Floor Elevation in an Intact Sinus or a Sinus With Prior Large Membrane Perforation: A Preclinical Study Using a Rabbit Sinus Model.

J Clin Periodontol

December 2024

Department of Periodontology, Kyung Hee University College of Dentistry, Periodontal-Implant Clinical Research Institute, Kyung Hee University Medical Center, Seoul, Republic of Korea.

Aim: To determine bone regeneration following sinus floor elevation (SFE) at sites with or without prior sinus membrane perforation.

Materials And Methods: The sinus membranes in the maxillary sinuses of 12 rabbits were intentionally perforated (≥ 5 mm) on one side, followed by application of a collagen matrix. SFE was performed on both sinuses after 8 weeks of healing, presenting two groups: SFE with a previous large sinus membrane perforation (group SFE_Perf), and in an intact sinus (group SFE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!