Electromicrofluidic Device for Interference-Free Rapid Antibiotic Susceptibility Testing of from Real Samples.

Sensors (Basel)

MEMS, Microfluidic and Nanoelectronics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Hyderabad 50078, India.

Published: November 2023

Antimicrobial resistance (AMR) is a global health threat, progressively emerging as a significant public health issue. Therefore, an antibiotic susceptibility study is a powerful method for combating antimicrobial resistance. Antibiotic susceptibility study collectively helps in evaluating both genotypic and phenotypic resistance. However, current traditional antibiotic susceptibility study methods are time-consuming, laborious, and expensive. Hence, there is a pressing need to develop simple, rapid, miniature, and affordable devices to prevent antimicrobial resistance. Herein, a miniaturized, user-friendly device for the electrochemical antibiotic susceptibility study of () has been developed. In contrast to the traditional methods, the designed device has the rapid sensing ability to screen different antibiotics simultaneously, reducing the overall time of diagnosis. Screen-printed electrodes with integrated miniaturized reservoirs with a thermostat were developed. The designed device proffers simultaneous incubator-free culturing and detects antibiotic susceptibility within 6 h, seven times faster than the conventional method. Four antibiotics, namely amoxicillin-clavulanic acid, ciprofloxacin, ofloxacin, and cefpodoxime, were tested against . Tap water and synthetic urine samples were also tested for antibiotic susceptibility. The results show that the device could be used for antibiotic resistance susceptibility testing against with four antibiotics within six hours. The developed rapid, low-cost, user-friendly device will aid in antibiotic screening applications, enable the patient to receive the appropriate treatment, and help to lower the risk of anti-microbial resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708865PMC
http://dx.doi.org/10.3390/s23239314DOI Listing

Publication Analysis

Top Keywords

antibiotic susceptibility
28
susceptibility study
16
antimicrobial resistance
12
antibiotic
9
susceptibility
8
susceptibility testing
8
user-friendly device
8
designed device
8
resistance
6
device
5

Similar Publications

Macrolide resistance due to (55).

Microbiol Spectr

January 2025

Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, Canada.

Unlabelled: Antimicrobial resistance (AMR) is a global threat. The identification and characterization of novel resistance genes is integral to AMR surveillance. The (55) gene was originally identified through whole genome sequencing of macrolide-resistant strains of .

View Article and Find Full Text PDF

Treatment with antibiotics is a major risk factor for infection, likely due to depletion of the gastrointestinal microbiota. Two microbiota-mediated mechanisms thought to limit colonization include the conversion of conjugated primary bile salts into secondary bile salts toxic to growth and competition between the microbiota and for limiting nutrients. Using a continuous flow model that simulates the nutrient conditions of the distal colon, we investigated how treatment with 6 clinically used antibiotics influenced susceptibility to infection in 12 different microbial communities cultivated from healthy individuals.

View Article and Find Full Text PDF

Type II restriction-modification (R-M) systems play a pivotal role in bacterial defense against invading DNA, influencing the spread of pathogenic traits. These systems often involve coordinated expression of a regulatory protein (C) with restriction (R) enzymes, employing complex feedback loops for regulation. Recent studies highlight the crucial balance between R and M enzymes in controlling horizontal gene transfer (HGT).

View Article and Find Full Text PDF

The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve , which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing (STEC) isolated from SCM milk.

View Article and Find Full Text PDF

Subclinical mastitis (SCM), a silent threat in the dairy sector of Bangladesh poses a significant economic impact and serves as a potential source of infection for healthy cows, hindering efforts to achieve milk self-sufficiency. Despite the importance of this issue, limited research has been conducted on mastitis in Sylhet region of Bangladesh. This study aimed to investigate the molecular prevalence, antimicrobial susceptibility profile and resistant genes detection on pathogens ( and causing SCM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!