AI Article Synopsis

  • The liver is crucial for metabolism and detoxification but is at risk of damage from infections, drugs, alcohol, and autoimmune diseases, complicating treatment for patients needing medication.
  • Acetaminophen (APAP) is generally safe but can cause liver toxicity in high doses, prompting this study to investigate its hepatotoxic effects and potential natural treatment options using mice.
  • The research found that certain natural products showed promise in protecting the liver, indicating they could help mitigate damage and improve liver function by addressing oxidative stress and inflammation, highlighting the need for new treatment strategies for drug-induced liver injury.

Article Abstract

The liver plays a vital role in metabolism, synthesis, and detoxification, but it is susceptible to damage from various factors such as viral infections, drug reactions, excessive alcohol consumption, and autoimmune diseases. This susceptibility is particularly problematic for patients requiring medication, as drug-induced liver injury often leads to underestimation, misdiagnosis, and difficulties in treatment. Acetaminophen (APAP) is a widely used and safe drug in therapeutic doses but can cause liver toxicity when taken in excessive amounts. This study aimed to investigate the hepatotoxicity of APAP and explore potential treatment strategies using a mouse model of APAP-induced liver injury. The study involved the evaluation of various natural products for their therapeutic potential. The findings revealed that natural products demonstrated promising hepatoprotective effects, potentially alleviating liver damage and improving liver function through various mechanisms such as oxidative stress and inflammation, which cause changes in signaling pathways. These results underscore the importance of exploring novel treatment options for drug-induced liver injury, suggesting that further research in this area could lead to the development of effective preventive and therapeutic interventions, ultimately benefiting patients with liver injury caused by medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708418PMC
http://dx.doi.org/10.3390/molecules28237901DOI Listing

Publication Analysis

Top Keywords

liver injury
20
natural products
12
liver
9
drug-induced liver
8
injury
5
products acetaminophen-induced
4
acetaminophen-induced acute
4
acute liver
4
injury review
4
review liver
4

Similar Publications

Mannose oligosaccharide (MOS) has been shown to promote animal growth, maintain intestinal health, and activate the intestinal immune system. However, the question of whether MOS can stimulate the immune system and alleviate acetylsalicylic acid (ASA)-induced gut damage remains unresolved. The purpose of this study was to investigate the impact of MOS pretreatment on the immunological and anti-inflammatory capabilities of rats with ASA-induced intestinal injury.

View Article and Find Full Text PDF

Nicotine, the main toxic component of tobacco, directly or indirectly causes adverse effects on the liver metabolism. Melatonin, secreted by the pineal gland, has anti-apoptotic activity as well as antioxidant activity. The aim of this study was to reveal the antiapoptotic effects of melatonin in rats with experimentally induced chronic liver damage with nicotine.

View Article and Find Full Text PDF

Organ fibrosis is a pathological process characterized by the inability of normal tissue cells to regenerate sufficiently to meet the dynamic repair demands of chronic injury, resulting in excessive extracellular matrix deposition and ultimately leading to organ dysfunction. Despite the increasing depth of research in the field of organ fibrosis and a more comprehensive understanding of its pathogenesis, effective treatments for fibrosis-related diseases are still lacking. Melatonin, a neuroendocrine hormone synthesized by the pineal gland, plays a crucial role in regulating biological rhythms, sleep, and antioxidant defenses.

View Article and Find Full Text PDF

Alcohol-associated liver disease (ALD) is a growing global health concern and its prevalence and severity are increasing steadily. While bacterial endotoxin translocation into the portal circulation is a well-established key factor, recent evidence highlights the critical role of sterile inflammation, triggered by diverse stimuli, in alcohol-induced liver injury. This review provides a comprehensive analysis of the complex interactions within the hepatic microenvironment in ALD.

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI) within the intensive care unit (ICU) is common but evidence is limited on longer-term renal outcomes. We aimed to model the trend of kidney function in ICU survivors using estimated glomerular filtration rate (eGFR), comparing those with and without AKI, and investigate potential risk factors associated with eGFR decline.

Methods: This observational cohort study included all patients aged 16 or older admitted to two general adult ICUs in Scotland between 1st July 2015 and 30th June 2018 who survived to 30 days following hospital discharge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!