Lithium metal is considered a promising anode material for lithium secondary batteries by virtue of its ultra-high theoretical specific capacity, low redox potential, and low density, while the application of lithium is still challenging due to its high activity. Lithium metal easily reacts with the electrolyte during the cycling process, resulting in the continuous rupture and reconstruction of the formed SEI layer, which reduces the cycling reversibility. On the other hand, repeated lithium plating/stripping processes can lead to uncontrolled growth of lithium dendrites and a series of safety issues caused by short-circuiting of the battery. Currently, modification of the battery separator layer is a good strategy to inhibit lithium dendrite growth, which can improve the Coulombic efficiency in the cycle. This paper reviews the preparation, behavior, and mechanism of the modified coatings using metals, metal oxides, nitrides, and other materials on the separator to inhibit the formation of lithium dendrites and achieve better stable electrochemical cycles. Finally, further strategies to inhibit lithium dendrite growth are proposed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10707981 | PMC |
http://dx.doi.org/10.3390/molecules28237788 | DOI Listing |
Alzheimers Dement
December 2024
Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A., Philadelphia, PA, USA.
Background: This study investigates the therapeutic versus side effects of intranasal lithium chloride (LiCl) in Ryanodex formulation vehicle (RFV) to inhibit inflammation and pyroptosis and to ameliorate on cognitive dysfunction and depressive behavior in 5XFAD mice.
Method: 5XFAD and wild type (WT) B6SJLF1/J mice were treated with intranasal or oral LiCl (3 mM/kg) dissolved in RFV starting at 2 or 9 months old and the continuous treatment lasted for 12 weeks. Behavior was examined for depression, cognition, olfaction, and motor function at the ages of 5 or 12 months.
ACS Nano
January 2025
Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China.
The widespread application of anode-free lithium metal batteries (AFLMBs) is hindered by the severe dendrite growth and side reactions due to the poor reversibility of Li plating/stripping. Herein, our study introduces an ultrathin interphase layer of covalent cage 3 (CC3) for highly reversible AFLMBs. The subnano triangular windows in CC3 serve as a Li sieve to accelerate Li desolvation and transport kinetics, inhibit electrolyte decomposition, and form LiF- and LiN-rich solid-electrolyte interphases.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
High-nickel ternary LiNiCoMnO (NCM622) is a promising cathode material for lithium-ion batteries due to its high discharge-specific capacity and energy density. However, problems of NCM622 materials, such as unstable surface structure, lithium-nickel co-segregation, and intergranular cracking, led to a decrease in the cycling performance of the material and an inability to fully utilize high specific capacity. Surface coating was the primary approach to address these problems.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Zlotowski Center for Neuroscience and Zelman Center-The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
This narrative review examines lithium's effects on immune function, inflammation and cell survival, particularly in bipolar disorder (BD) in in vitro studies, animal models and clinical studies. In vitro studies show that high lithium concentrations (5 mM, beyond the therapeutic window) reduce interleukin (IL)-1β production in monocytes and enhance T-lymphocyte resistance, suggesting a protective role against cell death. Lithium modulates oxidative stress in lipopolysaccharide (LPS)-activated macrophages by inhibiting nuclear factor (NF)-ƙB activity and reducing nitric oxide production.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
LiMnO, a significant cathode material for lithium-ion batteries, has garnered considerable attention due to its low cost and environmental friendliness. However, its widespread application is constrained by its rapid capacity degradation and short cycle life at elevated temperatures. To enhance the electrochemical performance of LiMnO, we employed a liquid-phase co-precipitation and calcination method to incorporate Cr into the LiMnO cathode material, successfully synthesizing a series of LiCrMnO (x = 0~0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!