The formation of a peptide fragment ion [c + 2H] was examined using ultraviolet matrix-assisted laser desorption/ionization in-source decay mass spectrometry (UV/MALDI-ISD MS). Unusually, an ISD experiment with a hydrogen-abstracting oxidative matrix 4-nitro-1-naphthol (4,1-NNL) resulted in a [c + 2H] ion when the analyte peptides contained serine (Ser), threonine (Thr), and/or cysteine (Cys) residues, although the ISD with 4,1-NNL merely resulted in [a] and [d] ions. The [c + 2H] ion observed could be rationalized through intramolecular hydrogen atom transfer (HAT), like a Type-II reaction via a seven-membered conformation involving intramolecular hydrogen bonding (HB) between the active hydrogens (-OH and -SH) of the Ser/Thr/Cys residues and the backbone carbonyl oxygen at the adjacent amino (N)-terminal side residue. The ISD of the Cys-containing peptide resulted in the [c + 2H] ions, which originated from cleavage at the backbone N-Cα bonds far from the Cys residue, suggesting that the peptide molecule formed 16- and 22-membered transient conformations in the gas phase. The time-dependent density functional theory (TDDFT) calculations of the model structures of the Ser and Cys residues indicated that the Cys residue did not show a constructive bond interaction between the donor thiol (-SH) and carbonyl oxygen (=CO), while the Ser residue formed a distinct intramolecular HB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708033 | PMC |
http://dx.doi.org/10.3390/molecules28237700 | DOI Listing |
Polymers (Basel)
January 2025
Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Brazil.
Technical lignins are globally available and a sustainable feedstock. The unique properties of technical lignins suggest that these materials should have several industrial applications. The main proposal of this study is to evaluate the relationship between the structure and properties of two technical lignins.
View Article and Find Full Text PDFMolecules
January 2025
Instituto Andaluz de Ciencias de la Tierra (IACT-CSIC), Consejo Superior de Investigaciones Científicas, Av. de las Palmeras 4, 18100 Armilla, Granada, Spain.
Many properties of 2,4-dichlorophenoxyacetic acid (2,4-D) depend on its molecular environment, such as whether it is an isolated molecule, a dimer, or in a crystalline state. The molecular geometry, conformational analysis, and vibrational spectrum of 2,4-D were theoretically calculated using Density Functional Theory (DFT) methods. A new slightly more stable conformer was found, which is different to those previously reported.
View Article and Find Full Text PDFMolecules
January 2025
Preclinical Department, Faculty of Medicine & Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia.
2-phenylchromen-4-one, commonly known as flavone, plays multifaceted roles in biological response that can be abundantly present in natural sources. The methoxy group in naturally occurring flavones promotes cytotoxic activity in various cancer cell lines by targeting protein markers, in facilitating ligand-protein binding mechanisms and activating cascading downstream signaling pathways leading to cell death. However, the lipophilic nature of these analogs is a key concern as it impacts drug membrane transfer.
View Article and Find Full Text PDFMolecules
January 2025
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russia.
The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
γ- and δ-lactones were formed by bromine oxidation of commercially available D-lyxose, as confirmed by IR analysis. The former was isolated, and its structure was confirmed by NMR spectra and X-ray analysis. In this structure, the presence of both intermolecular and intramolecular hydrogen bonds was found.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!