Transforming growth factor-beta 2 (TGF-β2), an important member of the TGF-β family, is a secreted protein that is involved in many biological processes, such as cell growth, proliferation, migration, and differentiation. TGF-β2 had been thought to be functionally identical to TGF-β1; however, an increasing number of recent studies uncovered the distinctive features of TGF-β2 in terms of its expression, activation, and biological functions. Mice deficient in TGF-β2 showed remarkable developmental abnormalities in multiple organs, especially the cardiovascular system. Dysregulation of TGF-β2 signalling was associated with tumorigenesis, eye diseases, cardiovascular diseases, immune disorders, as well as motor system diseases. Here, we provide a comprehensive review of the research progress in TGF-β2 to support further research on TGF-β2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10706148PMC
http://dx.doi.org/10.3390/cells12232739DOI Listing

Publication Analysis

Top Keywords

transforming growth
8
tgf-β2
7
progress transforming
4
growth factor-β2
4
factor-β2 transforming
4
growth factor-beta
4
factor-beta tgf-β2
4
tgf-β2 member
4
member tgf-β
4
tgf-β family
4

Similar Publications

Diabetic nephropathy is a severe chronic complication characterized by cytotoxicity, inflammation, and fibrosis, ultimately leading to renal failure. This study systematically investigated the effects of the PARP1 inhibitor PJ-34 on high glucose-induced cytotoxicity, inflammation, and fibrosis in HK-2 cells, as well as its improvement on neuropathic pain response and transforming growth factor β (TGFβ) expression in a type 1 diabetes mellitus diabetic nephropathy mouse model. Through cellular and animal experiments, we observed that PJ-34 significantly enhanced the proliferative capacity of cells damaged by high glucose, reduced apoptosis, and decreased the release of proinflammatory factors TGFα, interleukin-6, and interleukin-1β.

View Article and Find Full Text PDF

Purpose: After stromal injury to the cornea, the release of growth factors and pro-inflammatory cytokines promotes the activation of quiescent keratocytes into a migratory fibroblast and/or fibrotic myofibroblast phenotype. Persistence of the myofibroblast phenotype can lead to corneal fibrosis and scarring, which are leading causes of blindness worldwide. This study aims to establish comprehensive transcriptional profiles for cultured corneal keratocytes, fibroblasts, and myofibroblasts to gain insights into the mechanisms through which these phenotypic changes occur.

View Article and Find Full Text PDF

Leukemia-driving mutations are thought to arise in hematopoietic stem cells (HSC), yet the natural history of their spread is poorly understood. We genetically induced mutations within endogenous murine HSC and traced them in unmanipulated animals. In contrast to mutations associated with clonal hematopoiesis (such as Tet2 deletion), the leukemogenic KrasG12D mutation dramatically accelerated HSC contribution to all hematopoietic lineages.

View Article and Find Full Text PDF

Fabry disease (FD) is a lysosomal disorder due to alpha-galactosidase-A enzyme deficiency, accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) which lead to proinflammatory effects. Males develop progressive hypertrophic cardiomyopathy (HCM) followed by fibrosis; females develop nonconcentric hypertrophy and/or early fibrosis. The inflammatory response to Gb3/lyso-Gb-3 accumulation is one of the suggested pathogenic mechanisms in FD cardiomyopathy when the secretion of inflammatory and transforming growth factors with infiltration of lymphocytes and macrophages into tissue promotes cardiofibrosis.

View Article and Find Full Text PDF

Background: Hepatic stellate cell (HSC) activation is a critical factor in the development of liver fibrosis. Recent research indicates that mesoderm/mesenchyme homeobox 1 (Meox1) contributes to fibrosis in organs like the skin and heart.

Objectives: To investigate the potential impact of Meox1 on HSC activation and provide an available target for hepatic fibrosis research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!