AI Article Synopsis

Article Abstract

For the first time, based on the expression analysis of a wide range of pro- and anti-fibrotic, pro- and anti-inflammatory, and pro- and anti-apoptotic genes, key markers of endoplasmic reticulum stress (ER-stress), molecular mechanisms for the regulation of fibrosis, and accompanying negative processes caused by thioacetamide (TAA) injections and subsequent injections of selenium-containing nanoparticles and sorafenib have been proposed. We found that selenium nanoparticles of two types (doped with and without sorafenib) led to a significant decrease in almost all pro-fibrotic and pro-inflammatory genes. Sorafenib injections also reduced mRNA expression of pro-fibrotic and pro-inflammatory genes but less effectively than both types of nanoparticles. In addition, it was shown for the first time that TAA can be an inducer of ER-stress, most likely activating the IRE1α and PERK signaling pathways of the UPR, an inducer of apoptosis and pyroptosis. Sorafenib, despite a pronounced anti-apoptotic effect, still did not reduce the expression of caspase-3 and 12 or mitogen-activated kinase JNK1 to control values, which increases the risk of persistent apoptosis in liver cells. After injections of selenium-containing nanoparticles, the negative effects caused by TAA were leveled, causing an adaptive UPR signaling response through activation of the PERK signaling pathway. The advantages of selenium-containing nanoparticles over sorafenib, established in this work, once again emphasize the unique properties of this microelement and serve as an important factor for the further introduction of drugs based on it into clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10706216PMC
http://dx.doi.org/10.3390/cells12232723DOI Listing

Publication Analysis

Top Keywords

selenium-containing nanoparticles
16
injections selenium-containing
8
nanoparticles sorafenib
8
pro-fibrotic pro-inflammatory
8
pro-inflammatory genes
8
perk signaling
8
nanoparticles
6
sorafenib
5
antifibrotic selenium-containing
4
nanoparticles model
4

Similar Publications

Food-derived nanomaterials optimizing bioactive peptides is an emerging route in the functional food field. Zein and gum arabic (GA) possess favorable encapsulation properties for controlled release, targeted delivery and stabilization of food bioactive ingredients, and thus are considered as promising carriers for delivery systems. In order to improve the bioavailability of rice selenium-containing peptide TSeMMM (T), the nanoparticles (ZTGNs) containing peptide T, zein and GA have been previously prepared.

View Article and Find Full Text PDF

Enhanced uranium sequestration through selenite-modified nano-chitosan loaded with melatonin: Facilitating U(IV) conversion.

Int J Pharm

September 2024

State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing 400038, China. Electronic address:

The combined chemotoxicity and radiotoxicity associated with uranium, utilized in nuclear industry and military applications, poses significant threats to human health. Among uranium pollutants, uranyl is particularly concerning due to its high absorptivity and potent nephrotoxicity in its + 6 valence state. Here, we have serendipitously found NaSeO facilitates the conversion of U(VI) to U(IV) precipitates.

View Article and Find Full Text PDF

This review describes and summarizes, for the first time, the molecular mechanisms of the cytotoxic effect of selenium nanoparticles of various origins on hepatocellular carcinoma cells. The text provides information from recent years indicating the regulation of various signaling pathways and endoplasmic reticulum stress by selenium nanoparticles; the pathways of cell death of liver cancer cells as a result of exposure to selenium nanoparticles are considered. Particular attention is paid to the participation of selenoproteins and selenium-containing thioredoxin reductases and glutathione peroxidases in these processes.

View Article and Find Full Text PDF

Current Trends on the Involvement of Zinc, Copper, and Selenium in the Process of Hepatocarcinogenesis.

Nutrients

February 2024

Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho 761-0793, Kagawa, Japan.

Numerous nutritional factors increase the risk of hepatocellular carcinoma (HCC) development. The dysregulation of zinc, copper, and selenium homeostasis is associated with the occurrence of HCC. The impairment of the homeostasis of these essential trace elements results in oxidative stress, DNA damage, cell cycle progression, and angiogenesis, finally leading to hepatocarcinogenesis.

View Article and Find Full Text PDF

Strokes rank as the second most common cause of mortality and disability in the human population across the world. Currently, available methods of treating or preventing strokes have significant limitations, primarily the need to use high doses of drugs due to the presence of the blood-brain barrier. In the last decade, increasing attention has been paid to the capabilities of nanotechnology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!