Integrated Analysis of Machine Learning and Deep Learning in Silkworm Pupae () Species and Sex Identification.

Animals (Basel)

State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.

Published: November 2023

Hybrid pairing of the corresponding silkworm species is a pivotal link in sericulture, ensuring egg quality and directly influencing silk quantity and quality. Considering the potential of image recognition and the impact of varying pupal postures, this study used machine learning and deep learning for global modeling to identify pupae species and sex separately or simultaneously. The performance of traditional feature-based approaches, deep learning feature-based approaches, and their fusion approaches were compared. First, 3600 images of the back, abdomen, and side postures of 5 species of male and female pupae were captured. Next, six traditional descriptors, including the histogram of oriented gradients (HOG), and six deep learning descriptors, including ConvNeXt-S, were utilized to extract significant species and sex features. Finally, classification models were constructed using the multilayer perceptron (MLP), support vector machine, and random forest. The results indicate that the {HOG + ConvNeXt-S + MLP} model excelled, achieving 99.09% accuracy for separate species and sex recognition and 98.40% for simultaneous recognition, with precision-recall and receiver operating characteristic curves ranging from 0.984 to 1.0 and 0.996 to 1.0, respectively. In conclusion, it can capture subtle distinctions between pupal species and sexes and shows promise for extensive application in sericulture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10705685PMC
http://dx.doi.org/10.3390/ani13233612DOI Listing

Publication Analysis

Top Keywords

deep learning
16
species sex
16
machine learning
8
learning deep
8
pupae species
8
feature-based approaches
8
descriptors including
8
species
7
learning
6
integrated analysis
4

Similar Publications

Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.

View Article and Find Full Text PDF

β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.

View Article and Find Full Text PDF

Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.

View Article and Find Full Text PDF

Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).

View Article and Find Full Text PDF

This study presents a novel approach to identifying meters and their pointers in modern industrial scenarios using deep learning. We developed a neural network model that can detect gauges and one or more of their pointers on low-quality images. We use an encoder network, jump connections, and a modified Convolutional Block Attention Module (CBAM) to detect gauge panels and pointer keypoints in images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!