Chronic obstructive pulmonary disease (COPD) is a chronic respiratory condition characterized by obstruction of airways and emphysematous lung tissue damage, with associated hypoxic vasoconstriction in the affected lung parenchyma. In our study, we evaluate the role of oxygen-enhanced (OE) MRI and dynamic contrast enhanced (DCE)-MRI in COPD patients for assessment of ventilation and perfusion defects and compared their severity with clinical severity. A total of 60 patients with COPD (diagnosed based on clinical and spirometry findings) and 2 controls with normal spirometry and no history of COPD were enrolled. All patients underwent MRI within 1 month of spirometry. OE-MRI was performed by administering oxygen at 12 L/min for 4 min to look for ventilation defects. DCE-MRI was performed by injecting intravenous gadolinium contrast, and perfusion abnormalities were detected by subtracting the non-enhanced areas from the first pass perfusion contrast images. A total of 87% of the subjects demonstrated ventilation and perfusion abnormalities on MRI independently. The lobe-wise distribution of ventilation and perfusion abnormalities correlated well with each other and was statistically significant in all lobes ( < 0.05). The severity of ventilation-perfusion defects also correlated well with clinical severity, as their median value (calculated using a Likert rating scale) was significantly lower in patients in the Global initiative for chronic Obstructive Lung Disease (GOLD) I/II group (3.25) compared to the GOLD III/IV group (7.25). OE- and DCE-MRI provide functional information about ventilation-perfusion defects and their regional distribution, which correlates well with clinical severity in patients with COPD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10706357 | PMC |
http://dx.doi.org/10.3390/diagnostics13233511 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!