AI Article Synopsis

  • Atopic dermatitis (AD) is an ongoing skin inflammatory condition, and recent evidence suggests that TGF-β1 plays a role in its inflammation and tissue changes.
  • A study involving 37 participants, including 25 with AD, analyzed mRNA and protein levels of TGF-β1 and SMAD3, finding a significant increase in TGF-β1 levels in AD-affected skin and a decrease in SMAD3 expression.
  • The results indicate that the signaling pathway involving TGF-β1 and SMAD3 is disrupted in AD, highlighting TGF-β1's potential importance in the disease's severity and development.

Article Abstract

Atopic dermatitis (AD) is a persistent and recurring inflammatory condition affecting the skin. An expanding corpus of evidence indicates the potential participation of transforming growth factor-β1 (TGF-β1) in the modulation of inflammation and tissue remodeling in AD. The primary objective of this study was to examine the aberrant modulation of TGF-β1/small mothers against decapentaplegic homolog 3 (SMAD3) signaling through a comprehensive analysis of their molecular and protein expression profiles. The study encompassed an aggregate of 37 participants, which included 25 AD patients and 12 controls. The assessment of mRNA and protein levels of TGF-β1 and SMAD3 was conducted utilizing quantitative real-time PCR and immunohistochemistry (IHC), whereas serum IgE and vitamin D levels were estimated by ELISA and chemiluminescence, respectively. Quantitative analysis demonstrated a 2.5-fold upregulation of TGF-β1 mRNA expression in the lesional AD skin (P < 0.0001). IHC also exhibited a comparable augmented pattern, characterized by moderate to strong staining intensities. In addition, TGF-β1 mRNA showed an association with vitamin D deficiency in serum (P < 0.02), and its protein expression was linked with the disease severity (P < 0.01) Furthermore, a significant decrease in the expression of the SMAD3 gene was observed in the affected skin (P = 0.0004). This finding was further confirmed by evaluating the protein expression and phosphorylation of SMAD3, both of which exhibited a decrease. These findings suggest that there is a dysregulation in the TGF-β1/SMAD3 signaling pathway in AD. Furthermore, the observed augmentation in mRNA and protein expression of TGF-β1, along with its correlation with the disease severity, holds considerable clinical significance and emphasizes its potential role in AD pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11036103PMC
http://dx.doi.org/10.1093/cei/uxad130DOI Listing

Publication Analysis

Top Keywords

atopic dermatitis
8
investigating dysregulation
4
dysregulation tgf-β1/smad3
4
tgf-β1/smad3 signaling
4
signaling atopic
4
dermatitis molecular
4
molecular immunohistochemical
4
immunohistochemical analysis
4
analysis atopic
4
dermatitis persistent
4

Similar Publications

Background: Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmunity and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined.

Methods: We report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS, including autoantibody profiling, cytokine analysis, and deep immune mapping.

View Article and Find Full Text PDF

Background: Asthma, allergic rhinitis, atopic dermatitis, and food allergy are type 2 inflammation diseases. Since the 1960s, the prevalence of those diseases has steadily increased, presumably due to the "Hygiene hypothesis" which suggests that early exposure of infants to pathogens, siblings, and environmental dust, has a protective effect against the development of allergic diseases. The COVID-19 pandemic increased environmental hygiene due to lockdowns, masks, and social distancing.

View Article and Find Full Text PDF

The changes of intestinal flora and metabolites in atopic dermatitis mice.

Front Microbiol

December 2024

Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China.

Introduction: Atopic dermatitis (AD) is an allergic disease caused by various factors that can affect an individual's appearance and cause psychological stress. Therefore, it is necessary to investigate the underlying mechanisms and develop effective treatment strategies. The gut microbiota and bacterial metabolism play crucial roles in human diseases.

View Article and Find Full Text PDF

Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma (CTCL), representing the majority of all lymphomas arising in the skin. The disease treatment focuses on managing symptoms and preventing disease evolution. To date, there is no gold standard for MF-CTCL treatment.

View Article and Find Full Text PDF

The role of the microbiome in allergic dermatitis-related otitis externa: a multi-species comparative review.

Front Vet Sci

December 2024

Department of Pathobiology Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.

The external ear canal, characterized by species-specific structural and physiological differences, maintains a hostile environment that prevents microbial overgrowth and foreign body entry, supported by factors such as temperature, pH, humidity, and cerumen with antimicrobial properties. This review combines several studies on the healthy ear canal's structure and physiology with a critical approach to the potential existence of an ear microbiome. We use a comparative multi-species approach to explore how allergic conditions alter the ear canal microenvironment and cerumen in different mammalian species, promoting pathogen colonization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!