Role for Nongenomic Estrogen Signaling in Male Fertility.

Endocrinology

Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA.

Published: January 2024

Estrogen actions are mediated by both nuclear (n) and membrane (m) localized estrogen receptor 1 (ESR1). Male Esr1 knockout (Esr1KO) mice lacking functional Esr1 are infertile, with reproductive tract abnormalities. Male mice expressing nESR1 but lacking mESR1 (nuclear-only estrogen receptor 1 mice) are progressively infertile due to testicular, rete testis, and efferent ductule abnormalities similar to Esr1KO males, indicating a role for mESR1 in male reproduction. The H2NES mouse expresses only mESR1 but lacks nESR1. The goal of this study was to identify the functions of mESR1 alone in mice where nESR1 was absent. Breeding trials showed that H2NES males are fertile, with decreased litter numbers but normal pup numbers/litter. In contrast to Esr1KO mice, H2NES testicular, and epididymal weights were not reduced, and seminiferous tubule abnormalities were less pronounced. However, Esr1KO and H2NES males both had decreased sperm motility and a high incidence of abnormal sperm morphology. Seminiferous tubule and rete testis dilation and decreased efferent ductule epithelial height characteristic of Esr1KO males were reduced in H2NES. Consistent with this, expression of genes involved in fluid transport and ion movement that were reduced in Esr1KO (Aqp1, Car2, Car14, Cftr) were partially or fully restored to wild-type levels in H2NES. In summary, in contrast to Esr1KO males, H2NES males are fertile and have reduced phenotypic and functional abnormalities in the testis and efferent ductules. Thus, mESR1 alone, in the absence of nESR1, can partially regulate male reproductive tract structure and function, emphasizing its importance for overall estrogen action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10797322PMC
http://dx.doi.org/10.1210/endocr/bqad180DOI Listing

Publication Analysis

Top Keywords

esr1ko males
12
h2nes males
12
estrogen receptor
8
esr1ko mice
8
reproductive tract
8
rete testis
8
testis efferent
8
efferent ductule
8
males fertile
8
contrast esr1ko
8

Similar Publications

Role for Nongenomic Estrogen Signaling in Male Fertility.

Endocrinology

January 2024

Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA.

Estrogen actions are mediated by both nuclear (n) and membrane (m) localized estrogen receptor 1 (ESR1). Male Esr1 knockout (Esr1KO) mice lacking functional Esr1 are infertile, with reproductive tract abnormalities. Male mice expressing nESR1 but lacking mESR1 (nuclear-only estrogen receptor 1 mice) are progressively infertile due to testicular, rete testis, and efferent ductule abnormalities similar to Esr1KO males, indicating a role for mESR1 in male reproduction.

View Article and Find Full Text PDF

Membrane-Localized Estrogen Receptor 1 Is Required for Normal Male Reproductive Development and Function in Mice.

Endocrinology

July 2016

Department of Physiological Sciences (M.K.N., T.I.M., S.H.L., P.S.C.), University of Florida, Gainesville, Florida 32610; Department of Comparative Biosciences (R.A.H.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Division of Endocrinology (E.R.L.), Department of Medicine, University of California, Irvine, Irvine, California 92697; and Department of Veterans Affairs Medical Center (E.R.L.), Long Beach, Long Beach, California 90822.

Estrogen receptor 1 (ESR1) mediates major reproductive functions of 17β-estradiol (E2). Male Esr1 knockout (Esr1KO) mice are infertile due to efferent ductule and epididymal abnormalities. The majority of ESR1 is nuclear/cytoplasmic; however, a small fraction is palmitoylated at cysteine 451 in mice and localized to cell membranes, in which it mediates rapid E2 actions.

View Article and Find Full Text PDF

Male mice deficient in ESR1 (ERalpha) (Esr1KO mice) are infertile, and sperm recovered from the cauda epididymis exhibit reduced motility and fail to fertilize eggs in vitro. These effects on sperm appear to result from defective epididymal function and not a direct effect on spermatogenesis, as Esr1KO germ cells transplanted into wild-type testes yield normal offspring. We hypothesized that the previously described defect in efferent duct fluid reabsorption would lead to alterations in the epididymal fluid milieu, which would negatively impact sperm function.

View Article and Find Full Text PDF

Epididymal hypo-osmolality induces abnormal sperm morphology and function in the estrogen receptor alpha knockout mouse.

Biol Reprod

May 2010

Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois 61802, USA.

Estrogen receptor-alpha (ESR1) is highly expressed in the efferent ductules of all species studied as well as in the epididymal epithelium in mice and other select species. Male mice lacking ESR1 (Esr1KO) are infertile, but transplantation studies demonstrated that Esr1KO germ cells are capable of fertilization when placed in a wild-type reproductive tract. These results suggest that extratesticular regions, such as the efferent ductules and epididymis, are the major source of pathological changes in Esr1KO males.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!