Background: Exosomes, nano-sized vesicles ranging between 30 and 150 nm secreted by human cells, play a pivotal role in long-range intercellular communication and have attracted significant attention in the field of regenerative medicine. Nevertheless, their limited productivity and cost-effectiveness pose challenges for clinical applications. These issues have recently been addressed by cell-derived nanovesicles (CDNs), which are physically synthesized exosome-mimetic nanovesicles from parent cells, as a promising alternative to exosomes. CDNs exhibit structural, physical, and biological properties similar to exosomes, containing intracellular protein and genetic components encapsulated by the cell plasma membrane. These characteristics allow CDNs to be used as regenerative medicine and therapeutics on their own, or as a drug delivery system.
Methods: The paper reviews diverse methods for CDN synthesis, current analysis techniques, and presents engineering strategies to improve lesion targeting efficiency and/or therapeutic efficacy.
Results: CDNs, with their properties similar to those of exosomes, offer a cost-effective and highly productive alternative due to their non-living biomaterial nature, nano-size, and readiness for use, allowing them to overcome several limitations of conventional cell therapy methods.
Conclusion: Ongoing research and enhancement of CDNs engineering, along with comprehensive safety assessments and stability analysis, exhibit vast potential to advance regenerative medicine by enabling the development of efficient therapeutic interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764700 | PMC |
http://dx.doi.org/10.1007/s13770-023-00610-4 | DOI Listing |
BMC Oral Health
January 2025
Paediatric and Community Dentistry, Faculty of Dentistry, Minia University, Ard Shalaby, El Minia, 61519, Egypt.
Background: This study aimed to assess the histological and radiographic effects of sodium hexametaphosphate (SHMP) as a direct pulp capping (DPC) agent in immature permanent dog premolars.
Methods: A split-mouth design was employed with three healthy 4-month-old Mongrel dogs, each having 36 premolars. The premolars were randomly assigned to either SHMP or MTA.
Nat Cardiovasc Res
January 2025
Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
Arrhythmias are a hallmark of myocardial infarction (MI) and increase patient mortality. How insult to the cardiac conduction system causes arrhythmias following MI is poorly understood. Here, we demonstrate conduction system restoration during neonatal mouse heart regeneration versus pathological remodeling at non-regenerative stages.
View Article and Find Full Text PDFNat Genet
January 2025
Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.
Aberrant immune responses to viral pathogens contribute to pathogenesis, but our understanding of pathological immune responses caused by viruses within the human virome, especially at a population scale, remains limited. We analyzed whole-genome sequencing datasets of 6,321 Japanese individuals, including patients with autoimmune diseases (psoriasis vulgaris, rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), pulmonary alveolar proteinosis (PAP) or multiple sclerosis) and coronavirus disease 2019 (COVID-19), or healthy controls. We systematically quantified two constituents of the blood DNA virome, endogenous HHV-6 (eHHV-6) and anellovirus.
View Article and Find Full Text PDFNPJ Microgravity
January 2025
Department of Biological Science, Boise State University, Boise, ID, 83725, USA.
Systemic mitochondrial dysfunction, dopamine loss, sustained structural changes in the basal ganglia including reduced tyrosine hydroxylase, and altered gait- these effects observed in space-flown animals and astronauts mirrors Parkinson's disease (PD). Evidence of mitochondrial changes in space-flown human cells, examined through the lens of PD, suggests that spaceflight-induced PD-like molecular changes are important to monitor during deep space exploration. These changes, may potentially elevate the risk of PD in astronauts.
View Article and Find Full Text PDFBMJ Open
January 2025
Institute of Diabetes Research, Helmholtz Munich German Research Center for Environmental Health, Munich, Germany
Introduction: The identification of type 1 diabetes at an early presymptomatic stage has clinical benefits. These include a reduced risk of diabetic ketoacidosis (DKA) at the clinical manifestation of the disease and a significant reduction in clinical symptoms. The European action for the Diagnosis of Early Non-clinical Type 1 diabetes For disease Interception (EDENT1FI) represents a pioneering effort to advance early detection of type 1 diabetes through public health screening.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!