Emergency resource scheduling is at the heart of the response to an oil spill, as it lays the foundation for all other emergency operations. Extant studies address the dynamicity inherent to these operations primarily by modeling a dynamic network flow with static data, which is not applicable to continuously changing conditions resulting from oil film movement. To enhance the responsiveness and cost-efficiency of the response to oil spills, this paper takes a novel approach and formulates a multi-objective location-routing model for multi-resource collaborative scheduling, namely, harnessing time-varying parameters rather than static data to model real-time changes in the demand for emergency resources and the transportation network. Additionally, the model considers various operational factors, including the transportation of multiple resources in the order of operating procedures; the coordination of split delivery with the consumption of emergency resources; and the matching of multiple resources with suitable vehicles. To solve the proposed model, a hybrid heuristic algorithm of PSO-PGSA is developed, which utilizes particle swarm optimization (PSO) to search widely for non-dominated solutions. The algorithm then makes use of the plant growth simulation algorithm (PGSA) to find the more effective vehicle routes based on the obtained solutions. Finally, a numerical analysis is used to illustrate the practical capabilities of the developed model and solution strategies. Most significantly, our work not only validates the methodology proposed here but also underlines the importance of incorporating the features of an oil spill emergency response into emergency logistics in general.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-30987-7 | DOI Listing |
Heliyon
January 2025
Interdisciplinary Research Center for Construction and Building Materials, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
Urbanization and population growth in India have quickened, leading to an annual generation of around 62 million tonnes of municipal solid waste (MSW). Improper management of organic waste presents a major environmental problem due to air and water pollution, soil contamination and greenhouse gas production. This research aims to develop refuse-derived fuel (RDF) as a viable option, converting waste into a high-calorific energy carrier for industrial use.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada.
Spilled plant-based oils behave very differently in comparison to petroleum oils and require different clean-up measures. They do not evaporate, disperse, dissolve, or emulsify to a significant degree but can polymerize and form an impermeable cap on sediment, smothering benthic media and resulting in an immediate impact on the wildlife community. The current study explored the application of rapid up-to-date direct analysis in real time (DART) with high-resolution mass spectrometry for plant-based oil typing.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94609, United States.
Exposure to household air pollution has been linked to adverse health outcomes among women aged 40-79. Little is known about how shifting from biomass cooking to a cleaner fuel like liquefied petroleum gas (LPG) could impact exposures for this population. We report 24-h exposures to particulate matter (PM), black carbon (BC), and carbon monoxide (CO) among women aged 40 to <80 years participating in the Household Air Pollution Intervention Network trial.
View Article and Find Full Text PDFWater Environ Res
January 2025
Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, P. R. China.
The discharge of oil-laden wastewater from industrial processes and the frequent occurrence of oil spills pose severe threats to the ecological environment and human health. Membrane materials with special wettability have garnered attention for their ability to achieve efficient oil-water separation by leveraging the differences in wettability at the oil-water interface. These materials are characterized by their simplicity, energy efficiency, environmental friendliness, and reusability.
View Article and Find Full Text PDFWater Environ Res
January 2025
Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, P. R. China.
The tolerance and degradation characteristics of a marine oil-degrading strain Acinetobacter sp. Y9 were investigated in the presence of diesel oil and simulated radioactive nuclides (Mn, Co, Ni, Sr, Cs) at varying concentrations, as well as exposure to γ-ray radiation (Co-60). The maximum tolerable concentrations for Coand Ni were found to be 5 mg/l and 25 mg/l, respectively, while the tolerable concentrations for Mn, Sr, and Cs exceeded 400 mg/l, 1000 mg/l, and 1000 mg/l, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!