Serine is a vital amino acid in tumorigenesis. While cells can perform de novo serine synthesis, most transformed cells rely on serine uptake to meet their increased biosynthetic requirements. Solute carriers (SLCs), a family of transmembrane nutrient transport proteins, are the gatekeepers of amino acid acquisition and exchange in mammalian cells and are emerging as anticancer therapeutic targets; however, the SLCs that mediate serine transport in cancer cells remain unknown. Here we perform an arrayed RNAi screen of SLC-encoding genes while monitoring amino acid consumption and cell proliferation in colorectal cancer cells using metabolomics and high-throughput imaging. We identify SLC6A14 and SLC25A15 as major cytoplasmic and mitochondrial serine transporters, respectively. We also observe that SLC12A4 facilitates serine uptake. Dual targeting of SLC6A14 and either SLC25A15 or SLC12A4 diminishes serine uptake and growth of colorectal cancer cells in vitro and in vivo, particularly in cells with compromised de novo serine biosynthesis. Our results provide insight into the mechanisms that contribute to serine uptake and intracellular handling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730406PMC
http://dx.doi.org/10.1038/s42255-023-00936-2DOI Listing

Publication Analysis

Top Keywords

serine uptake
16
amino acid
12
cancer cells
12
serine
10
solute carriers
8
serine transport
8
transport cancer
8
novo serine
8
colorectal cancer
8
slc6a14 slc25a15
8

Similar Publications

Macrophages are an integral part of the innate immune system and act as a first line of defense to pathogens; however, macrophages can be reservoirs for pathogens to hide and replicate. Tuberculosis, influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are common diseases whose pathogens are uptaken into macrophages. Current treatments for diseases such as these are limited by the therapeutic delivery method, which typically involves systemic delivery in large, frequent doses.

View Article and Find Full Text PDF

Dysfunctions in autophagy, a cellular mechanism for breaking down components within lysosomes, often lead to neurodegeneration. The specific mechanisms underlying neuronal vulnerability due to autophagy dysfunction remain elusive. Here we show that autophagy contributes to cerebellar Purkinje cell (PC) survival by safeguarding their glycolytic activity.

View Article and Find Full Text PDF

Radiosynthesis and evaluation of novel F labeled PET ligands for imaging monoacylglycerol lipase.

Eur J Med Chem

January 2025

Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States. Electronic address:

Monoacylglycerol lipase (MAGL) is a 33 kDa cytosolic serine hydrolase that is widely distributed in the central nervous system and peripheral tissues. MAGL hydrolyzes monoacylglycerols into fatty acids and glycerol, playing a crucial role in endocannabinoid degradation. Inhibition of MAGL in the brain elevates levels of 2-arachidonoylglycerol and leads to decreased pro-inflammatory prostaglandin and thromboxane production.

View Article and Find Full Text PDF

Activation of the De Novo Serine Synthesis Pathway and Disruption of Insulin Signaling Induced by Supplemental SeMet in Vitro.

Biol Trace Elem Res

January 2025

Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.

Selenium (Se) intake or selenoprotein overexpression can cause abnormal glucose metabolism and increase the risk of type 2 diabetes (T2D). The purpose of this study is to observe whether glycolysis bypass in the de novo serine synthesis pathway (SSP) is activated under high-Se stress in vitro. Initially, HCT-116, L02, HepG2, and differentiated C2C12 cells were exposed to five selenomethionine (SeMet) concentrations (0.

View Article and Find Full Text PDF

D-ribose-5-phosphate inactivates YAP and functions as a metabolic checkpoint.

J Hematol Oncol

January 2025

Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.

Background: Targeting glucose uptake by glucose transporter (GLUT) inhibitors is a therapeutic opportunity, but efforts on GLUT inhibitors have not been successful in the clinic and the underlying mechanism remains unclear. We aim to identify the key metabolic changes responsible for cancer cell survival from glucose limitation and elucidate its mechanism.

Methods: The level of phosphorylated YAP was analyzed with Western blotting and Phos-tag immunoblotting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!