Efficient manufacture of recombinant adeno-associated virus (rAAV) vectors for gene therapy remains challenging. Packaging cell lines containing stable integration of the AAV rep/cap genes have been explored, however rAAV production needs to be induced using wild-type adenoviruses to promote episomal amplification of the integrated rep/cap genes by mobilizing a cis-acting replication element (CARE). The adenovirus proteins responsible are not fully defined, and using adenovirus during rAAV manufacture leads to contamination of the rAAV preparation. 'TESSA' is a helper adenovirus with a self-repressing Major Late Promoter (MLP). Its helper functions enable efficient rAAV manufacture when the rep and cap genes are provided in trans but is unable to support rAAV production from stable packaging cells. Using rAAV-packaging cell line HeLaRC32, we show that expression of the adenovirus L4 22/33K unit is essential for rep/cap amplification but the proteins are titrated away by binding to replicating adenovirus genomes. siRNA-knockdown of the adenovirus DNA polymerase or the use of a thermosensitive TESSA mutant decreased adenovirus genome replication whilst maintaining MLP repression, thereby recovering rep/cap amplification and efficient rAAV manufacture. Our findings have direct implications for engineering more efficient adenovirus helpers and superior rAAV packaging/producer cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10709602 | PMC |
http://dx.doi.org/10.1038/s41598-023-48901-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!