Here, we performed RNA-seq based expression analysis of root and leaf tissues of a set of 24 historical spring wheat cultivars representing 110 years of temporal genetic variations. This huge 130 tissues RNAseq dataset was initially used to study expression pattern of 97 genes regulating root growth and development in wheat. Root system architecture (RSA) is an important target for breeding stress-resilient and high-yielding wheat cultivars under climatic fluctuations. However, root transcriptome analysis is usually obscured due to challenges in root research due to their below ground presence. We also validated the dataset by performing correlation analysis between expression of RSA related genes in roots and leaves with 25 root traits analyzed under varying moisture conditions and 10 yield-related traits. The Pearson's correlation coefficients between root phenotypes and expression of root-specific genes varied from -0.72 to 0.78, and strong correlations with genes such as DRO1, TaMOR, ARF4, PIN1 was observed. The presented datasets have multiple uses such as a) studying the change in expression pattern of genes during time, b) differential expression of genes in two very important tissues of wheat i.e., leaf and roots, and c) studying customized expression of genes associated with important phenotypes in diverse wheat cultivars. The initial findings presented here provided key insights into understanding the transcriptomic basis of phenotypic variability of RSA in wheat cultivars.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10709563 | PMC |
http://dx.doi.org/10.1038/s41597-023-02769-w | DOI Listing |
Plant Mol Biol
January 2025
Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
Nitrogen (N) is a major plant nutrient and its deficiency can arrest plant growth. However, how low-N stress impair plant growth and its related tolerance mechanisms in peanut seedlings has not yet been explored. To counteract this issue, a hydroponic study was conducted to explore low N stress (0.
View Article and Find Full Text PDFSci Data
January 2025
Section of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany.
Multi-environmental trials (MET) with temporal and spatial variance are crucial for understanding genotype-environment-management (GxExM) interactions in crops. Here, we present a MET dataset for winter wheat in Germany. The dataset encompasses MET spanning six years (2015-2020), six locations and nine crop management scenarios (consisting of combinations for three treatments, unbalanced in each location and year) comparing 228 cultivars released between 1963 and 2016, amounting to a total of 526,751 data points covering 24 traits.
View Article and Find Full Text PDFProtoplasma
January 2025
Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.
Stay-green (SG) and stem reserve mobilization (SRM) are two significant mutually exclusive traits, which contributes to grain-filling during drought and heat stress in wheat. The current research was conducted in a genome-wide association study (GWAS) panel consisting of 278 wheat genotypes of advanced breeding lines to find the markers linked with SG and SRM traits and also to screen the superior genotypes. SG and SRM traits, viz.
View Article and Find Full Text PDFPest Manag Sci
January 2025
College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China.
Background: Fomesafen is a selective herbicide widely used to control post-emergent broad-leaf weeds in soybean and peanut fields. Because of its persistent nature in soil, it can suppress subsequent crops, including wheat. There is limited information focusing on methods of protecting wheat from fomesafen injury by soil residue.
View Article and Find Full Text PDFBMC Genom Data
January 2025
Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang, 050000, China.
Background: Wheat seeds display different colors due to the types and contents of anthocyanins, which is closely related to anthocyanin metabolism. In this study, a transcriptomic and metabolomic analysis between white and purple color wheat pericarp aimed to explore some key genes and metabolites involved in anthocyanin metabolism.
Results: Two wheat cultivars, a white seed cultivar Shiluan02-1 and purple seed cultivar Hengzi151 were used to identify the variations in differentially expressed genes (DEGs) and differentially accumulated flavonoids (DAFs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!