The broad employment of clean hydrogen through water electrolysis is restricted by large voltage requirement and energy consumption because of the sluggish anodic oxygen evolution reaction. Here we demonstrate a novel alternative oxidation reaction of green electrosynthesis of valuable 3,3'-diamino-4,4'-azofurazan energetic materials and coupled with hydrogen production. Such a strategy could greatly decrease the hazard from the traditional synthetic condition of 3,3'-diamino-4,4'-azofurazan and achieve low-cell-voltage hydrogen production on WS/Pt single-atom/nanoparticle catalyst. The assembled two-electrode electrolyzer could reach 10 and 100 mA cm with ultralow cell voltages of 1.26 and 1.55 V and electricity consumption of only 3.01 and 3.70 kWh per m of H in contrast of the conventional water electrolysis (~5 kWh per m). Density functional theory calculations combine with experimental design decipher the synergistic effect in WS/Pt for promoting Volmer-Tafel kinetic rate during alkaline hydrogen evolution reaction, while the oxidative-coupling of starting materials driven by free radical could be the underlying mechanism during the synthesis of 3,3'-diamino-4,4'-azofurazan. This work provides a promising avenue for the concurrent electrosynthesis of energetic materials and low-energy-consumption hydrogen production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10709341PMC
http://dx.doi.org/10.1038/s41467-023-43698-xDOI Listing

Publication Analysis

Top Keywords

hydrogen production
16
energetic materials
12
green electrosynthesis
8
33'-diamino-44'-azofurazan energetic
8
materials coupled
8
water electrolysis
8
evolution reaction
8
hydrogen
6
33'-diamino-44'-azofurazan
4
electrosynthesis 33'-diamino-44'-azofurazan
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!