AI Article Synopsis

  • A multifunctional beam splitting frequency selective surface (FSS) is developed using a C-shaped split-ring resonator on flexible polyimide material, allowing it to operate effectively in transmission and reflection modes.
  • It reflects and transmits half of a linearly polarized wave at two specific frequency bands (5.8-6.2 GHz and 18.5-22 GHz), while also maintaining stability at angles up to 40 degrees.
  • This technology has significant applications across various fields such as antenna systems, radar, wireless communication, and defense due to its unique capabilities like polarization transformation and size miniaturization.

Article Abstract

A multifunctional beam splitting frequency selective surface (FSS) is modeled, analyzed, and tested in transmission and reflection modes. The proposed FSS comprises a C-shaped split-ring resonator designed and fabricated on an ultrathin, flexible polyimide material. When a linearly polarized incident wave interacts with the unit cell of the proposed FSS, half of the wave is reflected, and the other half is transmitted at two frequency bands from 5.8-6.2 GHz and 18.5-22 GHz. Moreover, the proposed FSS is angularly stable upto 40 and also performs simultaneous beam splitting and quarter-wave operation within one of its two bands of operation i.e., from 16.5-18.2 GHz. Such flexible beam splitting FSSs with polarization transformation operation and having angular stability, size miniaturization and multi-band operation is a specialized component having potential to be used for electromagnetic wave manipulation in antenna systems, radar technology, stealth technology, wireless communication, satellite communication, medical imaging, security and surveillance, aerospace and defense, and automotive radar.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10709423PMC
http://dx.doi.org/10.1038/s41598-023-48306-yDOI Listing

Publication Analysis

Top Keywords

beam splitting
12
proposed fss
12
polarization transformation
8
transformation operation
8
operation
5
conformal beam
4
beam splitter
4
splitter polarization
4
operation multifunctional
4
multifunctional beam
4

Similar Publications

We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator (CSRR) filled with perovskite material and dual -shaped perovskite resonators; a middle layer of polyimide dielectric; and a bottom layer comprising a perovskite substrate with an oppositely oriented circular split ring resonator filled with gold. By modulating the intensity of a laser beam, we achieve autonomous manipulation of incident circularly polarized terahertz waves in both transmission and reflection modes.

View Article and Find Full Text PDF

Stargardt disease is a currently untreatable, inherited neurodegenerative disease that leads to macular degeneration and blindness due to loss-of-function mutations in the ABCA4 gene. We have designed a dual adeno-associated viral vector encoding a split-intein adenine base editor to correct the most common mutation in ABCA4 (c.5882G>A, p.

View Article and Find Full Text PDF

Quantifying the mechanical response of the biological milieu (such as the cell's interior) and complex fluids (such as biomolecular condensates) would enable a better understanding of cellular differentiation and aging and accelerate drug discovery. Here we present time-shared optical tweezer microrheology to determine the frequency- and age-dependent viscoelastic properties of biological materials. Our approach involves splitting a single laser beam into two near-instantaneous time-shared optical traps to carry out simultaneous force and displacement measurements and quantify the mechanical properties ranging from millipascals to kilopascals across five decades of frequency.

View Article and Find Full Text PDF

We present state-to-state differential cross sections for rotationally inelastic collisions of vibrationally excited NO XΠ ( = 9) with Ar using a near-counterpropagating molecular beam geometry. These were obtained using the stimulated emission pumping technique coupled with velocity map imaging. Collision energies well over ∼1 eV were achieved and rotational excitations up to ∼Δ = 60 recorded for the first time for inelastic collisions.

View Article and Find Full Text PDF

The cross talk and power consumption of the 2 × 2 optical switch is a key metric in the design of large-scale photonic integrated circuits (PICs). We build a theoretical model of a 2 × 2 Mach-Zehnder interferometer (MZI) optical switch, taking into account both imbalances in the arm loss and the coupler splitting ratio. The splitting ratio imbalance requirement for a given switch cross talk is summarized, which provides a guideline for the switch design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!