General Principles and Limitations for Detection of RNA Modifications by Sequencing.

Acc Chem Res

Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128 Mainz, Germany.

Published: February 2024

AI Article Synopsis

  • The field of modification mapping has significantly grown over the last decade, allowing for transcriptome-wide analyses of RNA modifications like mA in mRNA through advanced sequencing techniques.
  • As various mapping techniques have emerged under the umbrella of "epitranscriptomics," there have been conflicting results due to technical issues, which complicate the accurate interpretation of RNA modifications in biological contexts.
  • The authors emphasize the need to understand the limitations of different mapping methods and propose to assess their effectiveness based on the size of the transcriptome they can analyze meaningfully, particularly highlighting the challenges of Illumina RNA-Seq protocols that require prior RNA-to-DNA conversion.

Article Abstract

Among the many analytical methods applied to RNA modifications, a particularly pronounced surge has occurred in the past decade in the field of modification mapping. The occurrence of modifications such as mA in mRNA, albeit known since the 1980s, became amenable to transcriptome-wide analyses through the advent of next-generation sequencing techniques in a rather sudden manner. The term "mapping" here refers to detection of RNA modifications in a sequence context, which has a dramatic impact on the interpretation of biological functions. As a consequence, an impressive number of mapping techniques were published, most in the perspective of what now has become known as "epitranscriptomics". While more and more different modifications were reported to occur in mRNA, conflicting reports and controversial results pointed to a number of technical and theoretical problems rooted in analytics, statistics, and reagents. Rather than finding the proverbial needle in a haystack, the tasks were to determine how many needles of what color in what size of a haystack one was looking at.As the authors of this Account, we think it important to outline the limitations of different mapping methods since many life scientists freshly entering the field confuse the accuracy and precision of modification mapping with that of normal sequencing, which already features numerous caveats by itself. Indeed, we propose here to qualify a specific mapping method by the size of the transcriptome that can be meaningfully analyzed with it.We here focus on high throughput sequencing by Illumina technology, referred to as RNA-Seq. We noted with interest the development of methods for modification detection by other high throughput sequencing platforms that act directly on RNA, e.g., PacBio SMRT and nanopore sequencing, but those are not considered here.In contrast to approaches relying on direct RNA sequencing, current Illumina RNA-Seq protocols require prior conversion of RNA into DNA. This conversion relies on reverse transcription (RT) to create cDNA; thereafter, the cDNA undergoes a sequencing-by-synthesis type of analysis. Thus, a particular behavior of RNA modified nucleotides during the RT-step is a prerequisite for their detection (and quantification) by deep sequencing, and RT properties have great influence on the detection efficiency and reliability. Moreover, the RT-step requires annealing of a synthetic primer, a prerequisite with a crucial impact on library preparation. Thus, all RNA-Seq protocols must feature steps for the introduction of primers, primer landing sites, or adapters on both the RNA 3'- and 5'-ends.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851944PMC
http://dx.doi.org/10.1021/acs.accounts.3c00529DOI Listing

Publication Analysis

Top Keywords

rna modifications
12
rna
8
detection rna
8
sequencing
8
modification mapping
8
high throughput
8
throughput sequencing
8
rna-seq protocols
8
detection
5
modifications
5

Similar Publications

N4-acetylcytidine (ac4C) modification is a crucial RNA modification widely present in eukaryotic RNA. Previous studies have demonstrated that ac4C plays a pivotal role in viral infections. Despite numerous studies highlighting the strong correlation between ac4C modification and cancer progression, its detailed roles and molecular mechanisms in normal physiological processes and cancer progression remain incompletely understood.

View Article and Find Full Text PDF

Application of the SpCas9 inhibitor BRD0539 for CRISPR/Cas9-based genetic tools in .

Biosci Microbiota Food Health

September 2024

Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.

Although the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system has been extensively developed since its discovery for eukaryotic and prokaryotic genome editing and other genetic manipulations, there are still areas warranting improvement, especially regarding bacteria. In this study, BRD0539, a small-molecule inhibitor of Cas9 (SpCas9), was used to suppress the activity of the nuclease during genetic modification of , as well as to regulate CRISPR interference (CRISPRi). First, we developed and validated a CRISPR-SpCas9 system targeting the gene of .

View Article and Find Full Text PDF

tRNA gene content, structure, and organization in the flowering plant lineage.

Front Plant Sci

December 2024

National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.

Transfer RNAs (tRNAs) are noncoding RNAs involved in protein biosynthesis and have noncanonical roles in cellular metabolism, such as RNA silencing and the generation of transposable elements. Extensive tRNA gene duplications, modifications to mature tRNAs, and complex secondary and tertiary structures impede tRNA sequencing. As such, a comparative genomic analysis of complete tRNA sets is an alternative to understanding the evolutionary processes that gave rise to the extant tRNA sets.

View Article and Find Full Text PDF

Unlabelled: The maturation of RNA is mediated by the coordinated actions of RNA-binding proteins through post-transcriptional pre-mRNA processing. This process is a central regulatory mechanism for gene expression and plays a crucial role in the development of complex biological systems. MYC directly upregulates transcription of genes encoding the core components of pre-mRNA splicing machinery.

View Article and Find Full Text PDF

Epitranscriptomic modifications on RNA play critical roles in stability, processing, and function, partly by influencing interactions with RNA-binding proteins and receptors. The role of post-transcriptional RNA modifications on cell-free non-coding small RNA (sRNA) remains poorly understood in disease contexts. High-density lipoproteins (HDL), which transport sRNAs, can lose their beneficial properties in atherosclerosis cardiovascular disease (ASCVD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!