Biosynthesis of D-arabitol, a high value-added platform chemical, from renewable carbon sources provides a sustainable and eco-friendly alternative to the chemical industry. Here, a robust brewing yeast, Zygosaccharomyces rouxii, capable of naturally producing D-arabitol was rewired through genome sequencing-based metabolic engineering. The recombinant Z. rouxii obtained by reinforcing the native D-xylulose pathway, improving reductive power of the rate-limiting step, and inhibiting the shunt pathway, produced 73.61% higher D-arabitol than the parent strain. Subsequently, optimization of the fermentation medium composition for the engineered strain provided 137.36 g/L D-arabitol, with a productivity of 0.64 g/L/h in a fed-batch experiment. Finally, the downstream separation of D-arabitol from the complex fermentation broth using an ethanol precipitation method provided a purity of 96.53%. This study highlights the importance of D-xylulose pathway modification in D-arabitol biosynthesis, and pave a complete and efficient way for the sustainable manufacturing of this value-added compound from biosynthesis to preparation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.130162 | DOI Listing |
Microorganisms
December 2024
Traditional Food Research Group, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea.
The microbial community of a soy sauce is one of the most important factors in determining the sensory characteristics of that soy sauce. In this study, the microbial communities and sensory characteristics of twenty samples of Korean soy sauce () were investigated using shotgun metagenome sequencing and descriptive sensory analysis, and their correlations were explored by partial least square (PLS) regression analysis. The metagenome analysis identified 1332 species of bacteria, yeasts, molds, and viruses across 278 genera, of which , , and accounted for more than 80% of the total community.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
is a typical aroma-producing yeast in food brewing, but it has low heat resistance and poor proliferation ability at high temperature. Trehalose is generally considered to be a protective agent that helps stable yeast cells resist heat shock stress, but its functional mechanism for yeast cells in the adaptation period under heat stress is unclear. In this study, the physiological metabolism changes, specific gene transcription expression characteristics, and transcriptome differences of under different carbon sources under high-temperature stress (40 °C) were compared to explore the mechanism of trehalose inducing to recover and proliferate under high-temperature stress during the adaptation period.
View Article and Find Full Text PDFFood Sci Nutr
November 2024
Key Laboratory of Biological Resource and Ecological Environment of the Ministry of Education, College of Life Sciences Sichuan University Chengdu China.
Zizhong Dongjian (ZZDJ) is one of the most famous and popular fermented vegetables in China. The aim of this study was to explore the microbial communities and volatile flavor compounds of ZZDJ during different fermentation periods, as well as to reveal the potential correlation between microbiota and flavor. A total of 84 volatile flavor compounds were detected in 0-year to 3-year ZZDJ samples.
View Article and Find Full Text PDFFood Res Int
December 2024
School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
The prolonged post-fermentation stage of Doubanjiang imparts unique flavors but may reduce microbial vitality and increase contamination, affecting quality. This study investigated the effect of Zygosaccharomyces rouxii inoculation during post-fermentation. Results showed a 46.
View Article and Find Full Text PDFFood Microbiol
January 2025
College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China. Electronic address:
To unlock the potential of strains for further enhancing the aromatic complexity of kiwifruit wines while avoiding undesirable flavors, indigenous non-Saccharomyces yeast extracellular extract treatment for fermentation was established. The extracellular extract from Zygosaccharomyces rouxii, Pichia kudriavzevii, and Meyerozyma guilliermondii were prepared and supplemented individually or in pairs to the kiwifruit wine fermentation system. Subsequently, the changes in physicochemical properties, antioxidants, and volatile characteristics of kiwifruit wines produced by different protocols were comprehensively evaluated, and the major aroma descriptors affecting sensory acceptability were analyzed by sensory evaluation and partial least squares regression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!