Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Landslides endanger lives and public infrastructure in mountainous areas. Monitoring landslide traces in real-time is difficult for scientists, sometimes costly and risky because of the harsh terrain and instability. Nowadays, modern technology may be able to identify landslide-prone locations and inform locals for hours or days when the weather worsens. This study aims to propose indicators to detect landslide traces on the fields and remote sensing images; build deep learning (DL) models to identify landslides from Sentinel-2 images automatically; and apply DL-trained models to detect this natural hazard in some particular areas of Vietnam. Nine DL models were trained based on three U-shaped architectures, including U-Net, U2-Net, and U-Net3+, and three options of input sizes. The multi-temporal Sentinel-2 images were chosen as input data for training all models. As a result, the U-Net, using an input image size of 32 × 32 and a performance of 97 % with a loss function of 0.01, can detect typical landslide traces in Vietnam. Meanwhile, the U-Net (64 × 64) can detect more considerable landslide traces. Based on multi-temporal remote sensing data, a different case study in Vietnam was chosen to see landslide traces over time based on the trained U-Net (32 × 32) model. The trained model allows mountain managers to track landslide occurrences during wet seasons. Thus, landslide incidents distant from residential areas may be discovered early to warn of flash floods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.169113 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!