Messenger RNA (mRNA) is a powerful tool for nucleic acid-based therapies and vaccination, but efficient and specific delivery to target tissues remains a significant challenge. In this study, we demonstrate lipoamino xenopeptide carriers as components of highly efficient mRNA LNPs. These lipo-xenopeptides are defined as 2D sequences in different 3D topologies (bundles or different U-shapes). The polar artificial amino acid tetraethylene pentamino succinic acid (Stp) and various lipophilic tertiary lipoamino fatty acids (LAFs) act as ionizable amphiphilic units, connected in different ratios via bisamidated lysines as branching units. A series of more lipophilic LAF-Stp carriers with bundle topology is especially well suited for efficient encapsulation of mRNA into LNPs, facilitated cellular uptake and strongly enhanced endosomal escape. These LNPs display improved, faster transfection kinetics compared to standard LNP formulations, with high potency in a variety of tumor cell lines (including N2a neuroblastoma, HepG2 and Huh7 hepatocellular, and HeLa cervical carcinoma cells), J774A.1 macrophages, and DC2.4 dendritic cells. High transfection levels were obtained even in the presence of serum at very low sub-microgram mRNA doses. Upon intravenous application of only 3 µg mRNA per mouse, in vivo mRNA expression is found with a high selectivity for dendritic cells and macrophages, resulting in a particularly high overall preferred expression in the spleen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2023.11.025 | DOI Listing |
Sci Immunol
January 2025
Koch Institute at MIT, Cambridge, MA 02139, USA.
Immune responses against cancer are dominated by T cell exhaustion and dysfunction. Recent advances have underscored the critical role of early priming interactions in establishing T cell fates. In this review, we explore the importance of dendritic cell (DC) signals in specifying CD8 T cell fates in cancer, drawing on insights from acute and chronic viral infection models.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Institute of Molecular Medicine, Huaqiao University, Quanzhou, China.
Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex.
View Article and Find Full Text PDFParasitol Res
January 2025
Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic.
Tick-borne encephalitis virus (TBEV) is flavivirus transmitted to the host via tick saliva which contains various molecules with biological impacts. One of such molecules is Iristatin, a cysteine protease inhibitor from Ixodes ricinus that has been shown to have immunomodulatory properties. To characterize Iristatin in the relation to TBEV, we investigate whether this tick inhibitor has any capacity to influence TBEV infection.
View Article and Find Full Text PDFSemin Immunopathol
January 2025
Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
The management of autoimmune diseases is currently limited by therapies that largely suppress the immune system, often resulting in partial and temporary remissions. Cellular immunotherapies offer a targeted approach by redirecting immune cells to correct the underlying autoimmunity. This review explores the latest advances in cellular immunotherapies for autoimmune diseases, focusing on various strategies, such as the use of chimeric antigen receptor (CAR) T cells, chimeric auto-antibody receptor (CAAR) T cells, regulatory T cells (Tregs), and tolerogenic dendritic cells (TolDCs).
View Article and Find Full Text PDFJ Exp Med
March 2025
Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Systemic sclerosis (SSc) is a debilitating autoimmune disease that preferentially afflicts women. The molecular origins of this female bias are unclear. A new study of plasmacytoid dendritic cells from SSc patients by Du et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!