A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Clinical Decision Support for Improved Neonatal Care: The Development of a Machine Learning Model for the Prediction of Late-onset Sepsis and Necrotizing Enterocolitis. | LitMetric

Clinical Decision Support for Improved Neonatal Care: The Development of a Machine Learning Model for the Prediction of Late-onset Sepsis and Necrotizing Enterocolitis.

J Pediatr

Department of Neonatal Intensive Care, Antwerp University Hospital, Edegem, Belgium; Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerpen, Belgium; Innocens BV, Antwerpen, Belgium.

Published: March 2024

AI Article Synopsis

  • Developed an AI software system to predict late-onset sepsis (LOS) and necrotizing enterocolitis (NEC) in premature infants in the NICU using continuous monitoring data.
  • The study used an XGBoost machine learning algorithm on a dataset of 865 preterm infants, achieving a sensitivity of 69% for all episodes and 81% for severe cases, significantly reducing the time to diagnosis.
  • The AI model's predictions can support clinicians' early detection efforts, indicating potential clinical and socioeconomic benefits, with further studies needed to understand the combined impact of AI and clinical expertise on patient outcomes.

Article Abstract

Objective: To develop an artificial intelligence-based software system for predicting late-onset sepsis (LOS) and necrotizing enterocolitis (NEC) in infants admitted to the neonatal intensive care unit (NICU).

Study Design: Single-center, retrospective cohort study, conducted in the NICU of the Antwerp University Hospital. Continuous monitoring data of 865 preterm infants born at <32 weeks gestational age, admitted to the NICU in the first week of life, were used to train an XGBoost machine learning (ML) algorithm for LOS and NEC prediction in a cross-validated setup. Afterward, the model's performance was assessed on an independent test set of 148 patients (internal validation).

Results: The ML model delivered hourly risk predictions with an overall sensitivity of 69% (142/206) for all LOS/NEC episodes and 81% (67/83) for severe LOS/NEC episodes. The model showed a median time gain of ≤10 hours (IQR, 3.1-21.0 hours), compared with historical clinical diagnosis. On the complete retrospective dataset, the ML model made 721 069 predictions, of which 9805 (1.3%) depicted a LOS/NEC probability of ≥0.15, resulting in a total alarm rate of <1 patient alarm-day per week. The model reached a similar performance on the internal validation set.

Conclusions: Artificial intelligence technology can assist clinicians in the early detection of LOS and NEC in the NICU, which potentially can result in clinical and socioeconomic benefits. Additional studies are required to quantify further the effect of combining artificial and human intelligence on patient outcomes in the NICU.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpeds.2023.113869DOI Listing

Publication Analysis

Top Keywords

late-onset sepsis
8
necrotizing enterocolitis
8
clinical decision
4
decision support
4
support improved
4
improved neonatal
4
neonatal care
4
care development
4
development machine
4
machine learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!