Minor ginsenosides have been proven to have higher pharmacological activity than the major ginsenosides. The transformation of major ginsenosides to minor ginsenosides by lactic acid bacteria was considered to be a promising method. Therefore, this study focuses on utilizing glycosidase-producing Lactiplantibacillus plantarum GLP40 to transform total ginsenosides (TG) and increase the content of minor ginsenosides, as well as investigate the neuroprotective effects of fermented total ginsenosides (FTG). After 21d fermentation, the transformation products were purified using D101 macroporous resin column chromatography, and identified by HPLC and LC-MS analyses. The neuroprotective effect of FTG was evaluated using MPTP-induced neural injury mice model. Lact. plantarum GLP40 fermentation increased the contents of minor ginsenosides in TG, such as Rg3, Rh2, CK, and Rk3. FTG showed stronger alleviation of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Hydrochloride (MPTP) induced memory loss and dyskinesia in mice, and inhibited tyrosine hydroxylase (TH) depletion and ionized calcium binding adapter molecule 1 (Iba-1) production than TG. Further, FTG significantly increased serum IL-10 levels and inhibited the expression of pro-inflammatory cytokines compared to TG. Moreover, FTG treatment activated the anti-apoptotic PI3K/AKT/mTOR signaling pathway and inhibited the expression of the inflammatory NF-κB/COX-2/iNOS pathway. In conclusion, Lact. plantarum GLP40 fermentation enhances the neuroprotective effects of total ginsenosides by increasing minor ginsenosides. FTG protected MPTP induced neural injury in mice by regulating inflammation and cell apoptosis signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fitote.2023.105769DOI Listing

Publication Analysis

Top Keywords

minor ginsenosides
24
total ginsenosides
16
ginsenosides
12
neuroprotective effects
12
plantarum glp40
12
increasing minor
8
effects total
8
lactiplantibacillus plantarum
8
major ginsenosides
8
ginsenosides ftg
8

Similar Publications

Objective: Minor ginsenosides have demonstrated promising anticancer effects in previous reports. Total minor ginsenosides (TMG) were obtained through the fermentation of major ginsenosides with , and potential anticancer effects of TMGs on the mouse colon cancer cell line CT26.WT, and , were investigated.

View Article and Find Full Text PDF

Genome-Wide Identification and Characterization of Gene Family in (Cucurbitaceae).

Life (Basel)

December 2024

Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi'an 710061, China.

is a traditional Chinese medicinal plant of considerable application value and commercial potential, primarily due to its production of various bioactive compounds, particularly dammarane-type triterpenoid saponins that are structurally analogous to ginsenosides. Oxidosqualene cyclase (OSC), a pivotal enzyme in the biosynthesis of triterpenoid metabolites in plants, catalyzes the conversion of oxidosqualene into triterpenoid precursors, which are essential components of the secondary metabolites found in . To elucidate the role of gene family members in the synthesis of gypenosides within , this study undertook a comprehensive genome-wide identification and characterization of genes within and compared their expression levels across populations distributed over different geographical regions by both transcriptome sequencing and qRT-PCR experimental validation.

View Article and Find Full Text PDF

Changes in Ginsenoside Composition, Antioxidant Activity and Anti-Inflammatory Activity of Ginseng Berry by Puffing.

Foods

December 2024

Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea.

The effects of puffing on the ginsenoside composition as well as antioxidant and anti-inflammatory activities of ginseng berry were investigated to increase the utilization of ginseng berry. There was no significant difference in extraction yield between the control and puffed samples at all moisture contents and pressure conditions ( < 0.05).

View Article and Find Full Text PDF

β-Glucosidase plays a pivotal role in transforming ginsenosides into specific minor ginsenosides. In this study, total ginsenosides from Panax notoginseng leaves were used as substrates to stimulate the growth of Aspergillus niger NG1306. Transcriptome analysis identified a β-glucosidase gene, Anglu04478 (1455 bp, 484 amino acids, 54.

View Article and Find Full Text PDF

Minor ginsenosides have demonstrated notable anti-fatigue capabilities. The aim of this study was to investigate the anti-fatigue mechanisms of total minor ginsenosides (TMGs) derived from a process involving probiotic fermentation and high-pressure steam treatment. The fatigue model was established in BALB/c male mice using weight-bearing swimming and TMGs were administered by orally at a dosage of 200 mg/kg for four weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!